一种短时多区域车速预测方法及系统与流程

文档序号:17834374发布日期:2019-06-05 23:22阅读:471来源:国知局
一种短时多区域车速预测方法及系统与流程

本发明涉及基于深度学习的预测方法,特别是一种短时多区域车速预测方法及系统。



背景技术:

良好的交通状况将为交通安全提供有效保障,准确的车速预测为改善交通状况提供了重要支撑。传统的交通状况预测方法无法对城市交通路网的车速状况进行可靠的预测。参数化方法(如线性回归模型和时间序列模型)善于处理规律性较强的交通数据,难以应用在数据包含随机与非线性特性的情况。非参数化方法(如支持向量积模型(supportvectormachine,svm)和k近邻模型(k-nearestneighbor,k-nn))虽然可以处理随机和非线性数据,但是难以挖掘大量交通数据中更深层次的相关性,使得该方法难以适用于大数据场景。为了解决这些问题,深度学习模型被用来预测短时车速。这些模型包括长短期记忆网络(longshort-termmemory,lstm)、卷积长短期记忆网络(convolutionallstm,convlstm)以及卷积神经网络(convolutionalneuralnetwork)。

上述基于深度学习的预测方法存在以下缺陷。1.递归神经网络(如长短期记忆网络和卷积长短期记忆网络)只有在上一个预测过程完成的情况下才能进行下一次预测;另外在每一次预测过程中都需要储存不同的中间结果。递归神经网络的这两个特性导致模型训练用时较长,需要占用大量的计算资源来完成预测任务。2.在一个神经网络模型中叠加多层递归神经网络会导致模型的不收敛,从而降低预测准确度。为了保证模型的收敛,预测模型往往只包含少量的网络层,这将限制模型的预测能力。3.上述深度学习模型是基于单任务学习建立的。单任务学习模型有两个弊端:无法利用一个模型对多个道路的车速同时进行预测,因此无法提供路网层面的交通信息;在预测一条道路的车速时无法利用其他区域的时空相关性信息,因此无法提供更加准确的预测结果。



技术实现要素:

本发明所要解决的技术问题是,针对现有技术不足,提供一种短时多区域车速预测方法,提高预测结果的准确性。

为解决上述技术问题,本发明所采用的技术方案是:一种短时多区域车速预测方法,包括以下步骤:

1)将历史车速数据(第i个路段,第t-k时刻的车辆速度)和相应的时间标识作为原始数据,由输入层导入mtl-tcn模型;其中,表示历史车辆速度数据;其中,i为路段标志;k表示回顾时间窗口(用k个历史数据点预测下一时刻的车速)。表示的时间标识;i=1,2,3;k=1,2,…,k

2)在mtl-tcn模型的第一层,残差网络和卷积层从原始数据中提取单个路段的时间相关信息将时间相关信息输入到mtl-tcn模型的第二层(表示路段i在模型第一层的输出);

3)在mtl-tcn模型的第二层,将来自第一层的各个路段的时间相关信息链接到一起,然后输入到mtl-tcn模型第二层的残差网络中;

4)输出层输出预测结果路段i在时间t时的车速,完成预测。

5)所述mtl-tcn模型包括第一层和第二层;其中,对于每个路段,所述第一层包括输入层;所述输入层与至少一个级联的第一处理层连接;所述第一处理层包括第一残差网络和与该第一残差网络连接的卷积层;所述第一残差网络与所述输入层连接;对于每个路段,所述第二层包括依次连接的第二残差网络、卷积层、第三残差网络、全连接层、输出层;所述第二层将来自第一层的各个路段的时间相关信息链接到一起。

本发明还提供了一种短时多区域车速预测系统,包括:

输入模块,用于将历史车速数据和相应的时间标识作为原始数据,将所述原始数据导入mtl-tcn模型第一层的输入层;其中,表示历史车辆速度数据;其中,i为路段标志;k表示回顾时间窗口;表示的时间标识;i=1,2,3;k=1,2,…,k;

提取模块,用于在mtl-tcn模型第一层的残差网络和卷积层从原始数据中提取单个路段的时间相关信息将时间相关信息输入到mtl-tcn模型的第二层;表示路段i在模型第一层的输出;

链接模块,mtl-tcn模型第二层将来自第一层的各个路段的时间相关信息链接到一起,然后作为新的输入量输入到mtl-tcn模型第二层的残差网络中;该新的输入量包含来自路网的时空相关信息,mtl-tcn模型第二层的神经网络处理所述时空相关信息,并将处理后的预测结果输入到mtl-tcn模型的输出层;

输出模块,用于输出预测结果即路段i在时间t时的车速,完成预测与现有技术相比,本发明所具有的有益效果为:

1)用时间卷积神经网络来代替递归神经网络,提高了计算速度,减少了对计算资源的占用;

2)残差神经网络在确保模型训练稳定性的同时有效的增加了模型中神经网络的层数,提高了模型的学习能力,从而使得预测结果更精确;

3)本发明提出的多任务学习模型能够用一个模型同时预测多个道路的车速,这样不但更加准确的预测单个路段的道路交通状况,也为交管部门或行人提供了整个路网层面上全面的交通信息。

附图说明

图1为单任务学习与多任务学习示意图;(a)单任务学习示意图;(b)多任务学习示意图;

图2为时间卷积神经网络(虚线表示平行运算)示意图;

图3为残差神经网络(曲线表示残差运算)示意图;

图4为mtl-tcn模型(曲线表示残差运算)示意图;

图5为本发明实现原理示意图;

图6为本发明实施例路段分布(圆圈里的数字为路段标签)示意图。

具体实施方式

为了预测多个路段的车速情况,现有的基于单任务学习的模型(如图1中的(a)所示)需要针对每个待预测路段建立单独的预测模型。这样不但忽略了各个路段交通状况的关联性,而且需要更多的计算资源来完成这些预测任务。为解决这些问题,本发明提出了基于多任务学习(如图1中的(b)所示)的车速预测模型:基于多任务学习的时间卷积神经网络(multi-tasklearningtemporalconvolutionalnetwork,mtl-tcn)。

mtl-tcn模型包括以下三个主要部分。

时间卷积神经网络:时间卷积神经网络基于扩增因果卷积网络,从图2可以看出其组成包含输入层,隐藏层和输出层。在时间节点t扩增因果卷积网络的核心计算是卷积运算f(t)。该卷积运算过程可以定义为

其中f(i)是卷积层的第i个过滤器,k是过滤器大小,d是扩增因子。该运算过程可以使输出层的每一个输出量在更少的计算步骤内尽可能多的表征来自输入层的输入量xi(i=0,...,t),从而提高运算效率。与此同时,时间卷积神经网络可以对多个预测过程进行平行运算,进一步缩短了运算耗时。此外,时间卷积神经网络可以直接将上一层的运算结果传递到下一层,无需储存中间结果,从而降低了计算资源的占用率。

残差神经网络:为了提高模型的学习能力,使得预测结果更精确,本发明利用残差神经网络在保证模型稳定性的情况下有效增加神经网络的层数。一个残差神经网络单元如图3所示。从图中可以看出该网络包括:时间卷积神经网络层、权重归一化层、激活函数层、池化层和dropout层。残差网络的运算过程可以表述为以下公式

y1=wf(t)+b(2)

w=sv/||v||(3)

y2=φ(y1)(4)

y3=φp(y2)·r(5)

其中,f(t)是扩增因果卷积网络在时间节点t的卷积运算。w和b是扩增因果卷积网络层参数。权重归一化层的计算过程如公式(3)所示。其中w表示公式(2)中的权重向量,s是一个标量,v表示参数向量,||v||表示v的欧几里得范数。激活函数层的运算如公式(3)所示,其中φ表示非线性激活函数。池化层和dropout层的运算如公式(5)所示,其中φp表示池化函数,运算符·表示乘积运算,r服从独立伯努利随机过程。

残差网络的运算过程可以总结为

其中φ表示非线性激活函数。在保证训练稳定性的前提下,残差神经网络可以显著增加神经网络层数,从而提高模型的学习能力。

多任务学习模型:为了在预测路网层面的车速时利用整个区域的时空相关性信息,本发明提出了一个基于深度学习的多任务学习模型。图4展示了该模型同时预测三个路段的情况。从图中可以看出该模型分为两层:第一层用来接收各个路段的车速历史数据,并对其进行计算提取单个路段的时间相关信息;第二层将对第一层的所得结果进行连接操作,这一过程确保了在预测各个路段车速时考虑到了全部三个路段之间的时空相关性。此外,为了进一步确保该模型的训练稳定性,第一层和第二层之间将进行残差运算。

图5mtl-tcn模型运算步骤表示历史车辆速度数据。其中,i为路段标志;k表示回顾时间窗口(用k个历史数据点预测下一时刻的车速)。表示的时间标识。z表示隐藏层的输出。

1)历史车速数据和相应的时间标识作为原始数据由输入层导入mtl-tcn模型。

2)在mtl-tcn模型的第一层,残差网络和卷积层将从原始输入数据中提取单个路段的时间相关信息这些信息将被输入到模型的第二层。

3)在模型的第二层,来自第一层的各个路段的时间相关信息将被链接到一起输入到第二层的残差网络中。

该步骤确保了在预测各个路段车速时考虑到了全部三个路段之间的时空相关性。

4)为了进一步确保该模型的训练稳定性,来自第一层的时间相关信息将再次被运用到第二层的残差网络中。

5)输出层将输出预测结果完成预测。

实施例:

长沙市中心区域24个路段的车速数据被用于验证mtl-tcn模型的预测准确性。该数据集一共包含27天的历史车速数据。其中前26天的数据用来训练模型,最后一天的数据用来验证模型的预测准确性。24个路段分布如图6所示。预测结果如表1所示。从表1可以看出相比于其他模型(长短期记忆网络(lstm)、卷积长短期记忆网络(convlstm)、支持向量积模型(svm)和k近邻模型(k-nn)),mtl-tcn模型能够达到最准确的预测精度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1