技术特征:
技术总结
本发明公开了一种基于TextCNN改进的文本分类方法,本方法采用改进后的TextCNN,改进后的TextCNN包括输入层,循环的卷积层与半池化层,全局池化层,输出层。输入层:通过词向量word embeddings将自然语言中的字词转为计算机理解的稠密向量Dense Vector。假设定义词向量的维度是n,定义句子最大限度包含单词数量为m,构成一张m*n的二维矩阵。循环的卷积与半池化层:等长卷积层,残差连接,循环叠加卷积与半池化。全局池化层:将以3,4,5个单词为单位同时进行卷积池化后的向量横向相加,增加特征的维度。输出层:该层的输入为全局池化层,经过SoftMax层作为输出层,进行分类。对于多分类问题使用SoftMax层,对于二分类问题使用一个含有sigmoid激活函数的神经元作为输出层。
技术研发人员:张涛;王露瑶;陈才;朱安琥
受保护的技术使用者:北京工业大学
技术研发日:2019.03.08
技术公布日:2019.06.21