一种高速列车牵引系统故障诊断方法与流程

文档序号:20353115发布日期:2020-04-10 23:09阅读:291来源:国知局
一种高速列车牵引系统故障诊断方法与流程

本发明涉及高速列车故障诊断领域,尤其涉及一种基于数据学习的高速列车牵引系统微小渐变故障的诊断方法。



背景技术:

目前,高速列车在中国的客运和货运方面发挥着越来越重要的作用,牵引系统作为高速列车的动力核心系统,其发生故障将导致列车停车、延误等事故,造成巨大损失。其中,微小渐变故障发生于显著性故障的初期,具有故障特性不明显、易被未知扰动与噪声掩盖的特点。因此,牵引系统微小渐变故障检测与诊断较显著性故障存在难度。对牵引系统微小渐变故障进行有效的检测与诊断,进而及时采取有效措施,能够提高系统的安全性,降低维护成本与损失。

对微小渐变故障有效的故障诊断能够提高系统的安全性,降低维护成本和损失,对于其安全维护与设备的健康管理等方面具有极其重要的意义。由于牵引系统的复杂性与微小渐变故障的故障特性不明显,变化特性不明显,目前基于数据驱动算法难以有效的实现对微小渐变故障的检测与诊断。



技术实现要素:

本发明的目的在于提供一种高速列车牵引系统故障诊断方法,以解决现有技术中存在的微小渐变故障诊断困难,诊断精确度不高的技术问题。

本发明提供的一种高速列车牵引系统故障诊断方法,包括:

(a)从半物理仿真平台采集序列数据并进行预处理,得到数据集,所述数据集包括训练集和测试集;

(b)利用状态微分反馈控制对lstm自编码器进行改进,得到lstm自编码器一,所述lstm自编码器一由l个lstm单元组成;

(c)利用所述数据集对所述lstm自编码器一训练获取lstm自编码器二;

(d)利用所述lstm自编码器二对所述测试集提取原始特征向量;

(e)利用t-sne算法对所述原始特征向量进行特征降维;

(f)对降维后的原始特征向量通过dbscan聚类方法进行故障诊断,得到诊断结果。

相对于现有技术,本发明基于数据学习的高速列车牵引系统微小渐变故障的诊断方法,具有如下有益效果:

基于改进lstm单元自编码器进行微小渐变故障的序列数据进行特征提取,这种方法能够较好的提取微小渐变故障的原始特征;

通过t-sne算法对原始特征进行降维处理,降低原始特征信息的冗余,提高诊断性能和降低计算复杂度;

通过dbscan聚类方法实现对微小渐变故障的无监督诊断,不需要事先标记,诊断精确度很高,对于未知的故障也有一定的诊断能力,满足微小渐变故障诊断要求。

针对高速列车牵引电机系统,该方法对于牵引系统中间电容、中间电阻与速度传感器退化故障等微小渐变故障进行诊断,适用范围比较广,有工程应用价值。

附图说明

为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的改进的lstm单元结构;

图2(a)为本发明实施例提供的编解码器模型总体框架和训练流程;

图2(b)为本发明实施例提供故障诊断模型的总体框架和流程;

图3(a)为本发明实施例提供已知故障类型的不同降维方法的效果图;

图3(b)为本发明实施例提供未知故障类型的t-sne降维方法的效果图;

图4(a)为本发明实施例提供已知故障类别聚类效果图;

图4(b)为本发明实施例提供未知故障类别聚类效果图;

图5为本发明实施例高速列车牵引系统的架构示意图;

具体实施方式

下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。

下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。

如图2(b)所示,本发明基于数据学习的高速列车牵引系统微小渐变故障的诊断方法主要包括如下步骤:

1、从半物理仿真平台采集序列数据并进行预处理,得到数据集,所述数据集包括训练集和测试集

对于采集的数据进行预处理:补充缺失值、修改异常值、平滑滤波、降低噪声、归一化处理。

具体的,对所述训练集与所述测试集的缺失值采用2-最近距离邻法填充数据中的缺失值;对序列数据异常值通过箱形图进行分析,并采用2-最近距离邻法修改数据中被判定为异常值的数值;序列数据通过小波滤波的方式进行平滑滤波,降低序列数据中的噪声;序列数据采用z-归一化方法,完成序列数据的归一化。

2、利用状态微分反馈控制对lstm自编码器进行改进,得到lstm自编码器一,所述lstm自编码器一由l个lstm单元组成

对基本的lstm单元进行改进,将状态微分反馈控制应用于lstm单元中:状态微分反馈控制被应用于改进的lstm单元中。

具体的,动态系统的状态向量在时间t-1和时间t-2时刻的状态微分信号pt-1在时刻t-1被更新,并在时刻t时刻被反馈到系统中参与控制lstm隐单元状态向量ct的遗忘与更新。改进的lstm单元描述如下式所示:

其中,ft表示遗忘门层输出,rt表示更新门层输出,ct表示隐单元状态,表示待选新状态量,pt表示单元隐状态向量的微分向量,ot表示输出门层输出,ht表示lstm单元输出。

如果lstm控制向量稳定,则lstm单元隐单元状态c会在稳定待更新向量的作用下稳定,从而lstm网络会稳定下来。方程(4)表明控制向量与lstm单元状态c的状态微分向量p有关。在微小渐变故障序列数据的序列样本较短时,故障信息变量的差分向量在泰勒展开一阶近似时呈线性变化。当lstm单元所学习到隐单元状态c与微小渐变故障信息变量具有较高相关性时,随着序列数据的迭代输入,lstm单元隐单元状态c的差分向量p稳定。而与差分向量p具有很强的相关性,因此会产生稳定的控制向量此时,lstm单元隐单元状态变量不易被遗忘与更新。当lstm单元所学到的隐单元状态c与微小渐变故障信息变量相关性较弱时,由于差分向量p不稳定,lstm单元的隐单元状态c由于不稳定控制向量会被经常遗忘与更新。其次,训练完成的lstm自编码器可以获取表征故障信息变量的差分趋势信号,可以较早地诊断微小渐变故障。

3、利用所述数据集对所述lstm自编码器一训练获取lstm自编码器二

利用训练集特征向量对编解码器模型无监督训练获取lstm自编码器。基于改进的lstm自编码器处理牵引系统序列数据后,将故障信息变量嵌入到固定长度的原始特征向量中。在编解码器模型的训练过程中,lstm自编码器读取牵引系统的序列样本x,每个样本为向量型序列数据,其中x=x1,x2...,xl-1,xl,nv表示向量维度,l表示序列数据样本长度。在完成序列数据样本x的读取处理过程之后,lstm自编码器中最后一层隐单元状态将被保留并作为原始特征向量。gru解码器初始化其第一层的隐单元状态为原始特征向量并输出目标序列其中训练的目标为编解码器输出序列与输入序列x在度量下保持相似,但顺序相反。在本发明中,通过最小化和x之间的平方误差jed进行训练:

其中dn表示整个训练集,在本发明中,编解码器模型训练的优化器为adam优化器。

4、利用所述lstm自编码器二对所述测试集提取原始特征向量

使用训练好的lstm自编码器模型,在输入部分输入测试集的序列样本x,每个样本为向量型序列数据,其中x=x1,x2...,xl-1,xl,nv表示向量维度,l表示序列数据样本长度。在完成序列数据样本x的读取处理过程之后,lstm自编码器中最后一层隐单元状态将被保留并作为原始特征向量,从而完成lstm自编码器对测试集数据的原始特征向量提取的任务。

训练后的lstm自编码器对牵引系统微小渐变故障的序列数据提取原始特征向量。

5、利用t-sne算法对所述原始特征向量进行特征降维

通过t-sne算法对原始特征向量进行降维,解决原始特征向量维数高,信息冗余的问题。在t-sne算法中,损失函数jsne为原始特征向量空间与目标降维空间中数据分布联合概率pd与qd的差异。概率分布差异采用kullback-leibler散度。t-sne算法的损失函数jsne表述如下所示:

其中pij与qij被定义为:下标i,j,k,l分别表示样本中第i,j,k,l个样本,表示高维空间中的原始特征向量,z表示降维后的特征向量,σ表示与与原始特征向量相关的高斯核函数的带宽。在优化过程中,通过随机梯度下降法来最小化kl散度。损失函数jsne的梯度信息由下式给出:

下标i,j,k,l分别表示样本中第i,j,k,l个样本,表示高维空间中的原始特征向量,z表示降维后的特征向量,σ表示与与原始特征向量相关的高斯核函数的带宽。在优化过程中,通过随机梯度下降法来最小化kl散度。损失函数jsne的梯度信息由下式给出:

在t-sne算法中,通过最小化从高维原始特征向量空间与低维特征向量空间的kl距离,从而保持降维前后特征向量分布的相似性。

6、对降维后的原始特征向量通过dbscan聚类方法进行故障诊断,得到诊断结果

利用训练集序列数据对编解码器模型无监督训练获取lstm自编码器模型。待诊断序列数据的原始特征向量由训练完成的lstm自编码器提取。原始特征向量维数高,存在信息冗余,为了降低信息冗余,降低算法运行的复杂度,通过t-sne算法对原始特征向量降维后得到最终特征向量z。最后,通过dbscan聚类方法将特征向量z进行聚类,实现牵引系统微小渐变故障诊断。

下面对本发明基于数据学习的高速列车牵引系统微小渐变故障的诊断方法进行仿真验证:

步骤1.首先确认微小渐变故障的类型,在本次验证中微小渐变故障类型包括中间电容退化故障(故障i),中间电阻退化故障(故障ii)和速度传感器退化故障(故障iii)。在该实验验证中还包含速度传感器偏置故障(故障iv),这是一种微小突变故障。故障i和故障ii用于无监督故障诊断模型训练和最后故障诊断模型测试过程。未经训练的故障类别(在本实验验证中为故障iii与故障iv)仅用于对训练好的故障诊断模型性测试验证,故障iii、故障iv用于测试模型对于未知故障的泛化能力。本次实验验证中四种故障的详细描述见表1。

表1故障类型描述

故障i和故障ii的数据划分为训练集和测试集,每个样本的数据形式为序列数据的向量。整个数据中总共有大约14000个序列数据向量形式的样本。在整个数据集中随机选择60%的数据来组成训练集(8500个样本),剩下的样本组成测试集(5455个样本)。其中,健康样本数为1180个,故障i样本数为990个,故障ii样本数为935个。同样,故障iii的样本数为1175个,故障iv的样本数为1175个.每个序列数据样本的长度范围为20到40。

步骤2.通过训练完成的改进lstm自编码器提取故障i和故障ii测试集的原始特征向量。并应用t-sne进行特征向量降维。图3(a)展示了不同降维方法(包括t-sne,核pca和isomap)对已知故障类型的特征向量的降维效果。其中,·表示健康样本点,+表示具有故障i的样本点,×表示具有故障ii的样本点。在pca降维结果与isomap降维结果中可以看出,健康样本的特征向量在低维空间呈现稳定的圆环状分布,故障i与故障ii两类微小渐变故障在低维空间中呈现起始于健康圆环的类圆锥状分布,这与微小渐变故障中故障信息变量具有缓时变特性一致,因此,佐证了lstm自编码器成功提取与微小渐变故障信息变量有关的特征向量。在本发明中,对未用于编解码器训练的故障类型(未知故障类别)进行实验验证测试。故障iii和故障iv的测试集用于测试故障诊断算法对未知故障类型的泛化能力。故障iii是牵引系统中的微小渐变故障,故障iv是牵引系统中发生的微小突变故障。图3(b)展示了使用t-sne算法对于未知故障的特征向量的降维效果,对于未知故障类别,特征向量的降维效果具有良好的类间距离与类内距离。

步骤3.将dbscan聚类算法应用于降维后的特征向量样本进行聚类,完成对测试集的故障诊断。dbscan聚类算法是一种基于密度的聚类算法,这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定。同一类别的样本,他们之间的紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在。通过将紧密相连的样本划为一类,这样就得到了一个聚类类别。通过将所有各组紧密相连的样本划为各个不同的类别,则我们就得到了最终的所有聚类类别结果。该方法是基于一组邻域来描述样本集的紧密程度的。dbscan使用的方法很简单,它任意选择一个没有类别的核心对象作为种子,然后找到所有这个核心对象能够密度可达的样本集合,即为一个聚类簇。接着继续选择另一个没有类别的核心对象去寻找密度可达的样本集合,这样就得到另一个聚类簇。一直运行到所有核心对象都有类别为止。

图4(a)对已知故障类别的数据进行聚类,聚类结果表明基于改进lstm自编码器的故障诊断算法能够成功实现对牵引系统中间电容与中间电阻的退化故障诊断,即实现牵引系统微小渐变故障诊断。图4(b)对未知故障类别的数据进行聚类,聚类结果表明本发明提出的算法对于一些未知故障,也有很好的诊断效果。

由附图4可知本发明的方法可以有效的对高速列车牵引电机的微小渐变故障进行诊断。对于一些未标记的故障,该方法也有很好的诊断效果,泛化能力比较强。

如图5所示,本发明实施例还提供了一种高速列车牵引系统的架构示意图,该牵引系统120包括:至少一个处理器121,例如cpu,至少一个网络接口124或者其他用户接口123,存储器125,至少一个通信总线122。通信总线122用于实现这些组件之间的连接通信。可选的,还包含用户接口123,包括显示器,键盘或者点击设备(例如,鼠标,轨迹球(trackball),触感板或者触感显示屏)。存储器125可能包含高速ram存储器,也可能还包括非不稳定的存储器(non-volatilememory),例如至少一个磁盘存储器。存储器125可选的可以包含至少一个位于远离前述处理器121的存储装置。

在一些实施方式中,存储器125存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:

操作系统1251,包含各种系统程序,用于实现各种基础业务以及处理基于硬件的任务;

应用程序1252,包含各种应用程序,用于实现各种应用业务。

具体地,处理器121用于执行步骤(1)-(4)对应的流程;在这个过程中,处理器121需要通过网络接口124接受传感器组126发送的信号处理。

同时,处理器121还用于:通过用户接口123将故障诊断结果输出至可视化的界面中。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1