一种船用离心泵预测性维护方法与流程

文档序号:19420810发布日期:2019-12-14 01:25阅读:629来源:国知局
一种船用离心泵预测性维护方法与流程

本发明涉及离心泵预测性维护技术领域,是一种船用离心泵预测性维护方法。



背景技术:

船舶系统中类似于大离心泵这样的旋转机械设备在运行时,受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,导致其机体振动烈度增大,威胁着自身和其它设备的正常使用,给船只的航行带来巨大的安全隐患,有时故障对整个船舶系统的危害甚至是毁灭性的。

船用离心泵维护有几种方式,“事故维修”方式使用设备直到发生故障,然后维修,对于大型设备,如遇突发性事故,可能会造成巨大损失。定期试验和维修维护方式是以在设备不运转的静态情况下进行的,存在以下不足之处:不工作情况下的设备状态和运行中差别很明显,影响判断精确度。由于是定期检查和维修,设备状态即使良好时,按计划仍需进行试验和维修,造成人力物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓维修过度。目前正在发展以状态监测(通常是在线监测)和故障诊断为基础的状态维修,专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。



技术实现要素:

本发明为给出离心泵预测性维护建议,本发明提供了一种船用离心泵预测性维护系统及其预测性维护方法,本发明提供了以下技术方案:

一种船用离心泵预测性维护方法,包括以下步骤:

步骤1:采集并存储离心泵振动信号,采集离心泵温度信号,将离心泵的振动信号和温度信号有线或者无线传输至服务器,对振动信号进行fft处理;

步骤2:记录离心泵累计的使用时间,并采集离心泵累计使用时间;

步骤3:建立故障模型,设定振动信号采样的时间间隔,对振动信号进行采样,所述故障模型根据离心泵累计使用时间、振动信号和温度信号,实时给出离心泵预计继续使用时间;

步骤4:显示的离心泵预计使用时间,服务器根据离心泵预计使用时间给出相应的维修处理建议。

优选地,所述步骤1具体为:

步骤1.1:采用振动速度传感器采集离心泵的振动信号,振动信号通过放大电路进行放大滤波,再通过a/d转换器进入为微处理器中,微处理器对振动信号进行短时傅里叶变换和滤波处理后,传送给zigbee模块;

步骤1.2:采用温度传感器采集离心泵的温度信号,温度信号通过放大电路进行放大,再通过a/d转换器进行数字化处理,通过微处理器将温度信号最终传给服务器;

步骤1.3:所述zigbee模块将离心泵的振动信号传输至服务器进行fft处理。

优选地,离心泵的振动信号在进行fft处理时,得到当前设定频率的振动强度、温度和设备累计使用时间的数据,根据已有的设定频率的振动强度、温度和设备累计使用时间的历史数据和当前设定频率的振动强度、温度和设备累计使用时间的数据相结合,得到设定频率的振动强度、温度、设备累计使用时间与设备工作状态的回归系数,具体为:

步骤5.1:建立参数数据向量,通过下式表示所述参数数据向量:

x=(x(1),x(2),x(3))(1)

其中,x为参数数据向量,x(1)为设定频率的振动强度,x(2)为温度,x(3)为设备累计使用时间;

步骤5.2:建立系数向量,通过下式表示所述系数向量:

w=(w(1),w(2),w(3))(2)

其中,w为系数向量,w(1)为设定频率的振动强度系数,w(2)为温度系数,w(3)为设备累计使用时间系数;

步骤5.3:使得xi为第i个训练数据向量,yi为xi的类标记;当yi为-1时表示设备故障,当yi为+1时表示设备正常,n为训练数据数目;

其中,c为惩罚系数,设定c为0.6,ξi为第i个训练数据的松弛变量,xi为第i个训练数据向量,yi为xi的类标记,b为偏置,ξ为松弛变量。

优选地,所述步骤2具体为:采用时钟电路记录离心泵累计使用时间,通过zigbee网关采集时钟电路记录离心泵累计使用时间。

优选地,所述步骤3具体为:

步骤3.1:建立故障模型,设定zigbee模块对振动和温度信号采样的时间间隔,通过下式确定zigbee模块对振动的时间间隔:

α=(α1,α2,α3,....,αn)t

其中,tp为zigbee模块对振动和温度信号采样的时间间隔,x0为在线监测得到的当前数据点参数数据向量,w*为系数向量的解,b*为偏置的解,xc为给定的标定数据点参数数据向量,α为拉格朗日乘子向量集合,α*为对偶问题的解的集合,αn*为对偶问题的解的第n个元素,αn为拉格朗日乘子向量的第n个元素。

步骤3.2:采用zigbee模块根据所述时间间隔进行采样,得到当前时刻的振动信号,所述故障模型根据离心泵累计使用时间、振动信号和温度信号,实时给出离心泵预计继续使用时间,通过下式表示离心泵继续工作的预计时间:

其中,tc为给出的标定数据点条件下继续工作的预计使用时间,x0为在线监测得到的当前数据点参数数据向量,xc为给定的标定数据点参数数据向量,t0为根据故障模型给出的当前数据点条件下继续工作的预计使用时间。

本发明具有以下有益效果:

本发明针与现有船用离心泵维护方式比较,本发明对船用离心泵进行在线监测,根据故障模型并结合目前参数,能实时给出预计继续使用时间,该信息可以在船上实时显示。对于船用离心泵的在线预测性维护而言,提供了最快速最精准的预测性维护信息。

与现有在线监测方式相比,本方式需要专家介入比较少,只需要专家提供标定数据点做为后续计算的基础。而现有在线监测方式对于状态监测所得到的每批测量值都需要专家介入评估,提出对设备的维修处理建议;因此,本发明具有更高的性价比。

采样振动数据占用sd卡存储空间和能耗都比较大,为节省sd卡存储空间,降低系统能耗,对于设备出现故障可能较小时,加大对振动数据采样的时间间隔;设备出现故障可能较大时,减小对振动数据采样的时间间隔。

附图说明

图1是船用离心泵预测性维护流程图。

具体实施方式

以下结合具体实施例,对本发明进行了详细说明。

具体实施例一:

按照图1所示,本发明提供一种船用离心泵预测性维护方法,一种船用离心泵预测性维护方法,包括以下步骤:

步骤1:采集并存储离心泵振动信号,采集离心泵温度信号,将离心泵的振动信号和温度信号通过无线或有线传输至服务器,对振动信号进行fft处理;

所述步骤1具体为:

步骤1.1:采用振动速度传感器采集离心泵的振动信号,振动信号通过放大电路进行放大滤波,再通过a/d转换器进入为微处理器中,微处理器对振动信号进行短时傅里叶变换和滤波处理后,传送给zigbee模块;

步骤1.2:采用温度传感器采集离心泵的温度信号,温度信号通过放大电路进行放大,再通过a/d转换器进行数字化处理,通过微处理器将温度信号传送给zigbee模块;

步骤1.3:所述zigbee模块将离心泵的振动信号传输至服务器进行fft处理。

离心泵的振动信号在进行fft处理时,得到当前设定频率的振动强度、温度和设备累计使用时间的数据,根据已有的设定频率的振动强度、温度和设备累计使用时间的历史数据和当前设定频率的振动强度、温度和设备累计使用时间的数据相结合,得到设定频率的振动强度、温度、设备累计使用时间与设备工作状态的回归系数,具体为:

步骤5.1:建立参数数据向量,通过下式表示所述参数数据向量:

x=(x(1),x(2),x(3))(1)

其中,x为参数数据向量,x(1)为设定频率的振动强度,x(2)为温度,x(3)为设备累计使用时间;

步骤5.2:建立系数向量,通过下式表示所述系数向量:

w=(w(1),w(2),w(3))(2)

其中,w为系数向量,w(1)为设定频率的振动强度系数,w(2)为温度系数,w(3)为设备累计使用时间系数;

步骤5.3:使得xi为第i个训练数据向量,yi为xi的类标记;当yi为-1时表示设备故障,当yi为+1时表示设备正常,n为训练数据数目;

其中,c为惩罚系数,设定c为0.6,ξi为第i个训练数据的松弛变量,xi为第i个训练数据向量,yi为xi的类标记,b为偏置,ξ为松弛变量。

步骤2:记录离心泵累计的使用时间,并采集离心泵累计使用时间;采用时钟电路记录离心泵累计使用时间,通过zigbee网关采集时钟电路记录离心泵累计使用时间。

步骤3:建立故障模型,设定振动信号采样的时间间隔,对振动信号进行采样,所述故障模型根据离心泵累计使用时间、振动信号和温度信号,实时给出离心泵预计继续使用时间;

所述步骤3具体为:

步骤3.1:建立故障模型,设定zigbee模块对振动信号采样的时间间隔,通过下式确定zigbee模块对振动的时间间隔:

α=(α1,α2,α3,....,αn)t

其中,tp为zigbee模块对振动信号采样的时间间隔,x0为在线监测得到的当前数据点参数数据向量,w*为系数向量的解,b*为偏置的解,xc为给定的标定数据点参数数据向量,α为拉格朗日乘子向量集合,α*为对偶问题的解的集合,αn*为对偶问题的解的第n个元素,αn为拉格朗日乘子向量的第n个元素。

步骤3.2:采用zigbee模块根据所述时间间隔进行采样,得到当前时刻的振动信号,所述故障模型根据离心泵累计使用时间、振动信号和温度信号,实时给出离心泵预计继续使用时间,通过下式表示离心泵继续工作的预计时间:

其中,tc为给出的标定数据点条件下继续工作的预计使用时间,x0为在线监测得到的当前数据点参数数据向量,xc为给定的标定数据点参数数据向量,t0为根据故障模型给出的当前数据点条件下继续工作的预计使用时间。

步骤4:显示的离心泵预计使用时间,服务器根据离心泵预计使用时间给出相应的维修处理建议。

以上所述仅是一种船用离心泵预测性维护方法的优选实施方式,一种船用离心泵预测性维护方法的保护范围并不仅局限于上述实施例,凡属于该思路下的技术方案均属于本发明的保护范围。应当指出,对于本领域的技术人员来说,在不脱离本发明原理前提下的若干改进和变化,这些改进和变化也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1