本发明的技术领域涉及大面积触摸织物。
具体来说,本发明涉及一种电容触摸织物传感器。
背景技术:
在现有技术中,已知1d或2d导电纱阵列作为触摸板中的传感元件,或者作为丝网印刷或层压的离散带,并用于创建敏感的触摸区域。
现有技术的一些问题在于以下事实:根据定义,使用离散的导电纱或印刷带降低了有效用于感测的总面积,因为传感元件之间的实际面积不用于拾取触摸活动,或者换句话说,这些中间区域是死区,对刺激获得没有贡献。
尤其是在织造织物形式中,触敏传感器元件始终是直线,因为正方形或矩形图案(如用于固体基材上以使更大面积的屏幕有助于感测动作)由于编织过程的固有特性而不能使用,在编织过程中,纱是直直地延伸。
文献us2016328043公开了一种传感器组件,该传感器组件形成在柔性基材(如合适的织物材料)上,具有被缝制或缝合到柔性基材中的导电图案以形成传感器阵列。导电图案形成对应于各个感测点的位置的节点和/或电极。在一个实施方式中,传感器组件实施多个触敏传感器,这些触敏传感器被布置成能够检测施加到阵列的静电场中的畸变,该畸变可测量为电容变化。
文献us2016282988公开了一种交互式纺织品,其包括非导电线与导电线的编织以形成交互式纺织品。非导电线可以对应于任何类型的非导电线、纤维或织物,例如棉、羊毛、丝绸、尼龙、聚酯等。
交互式纺织品包括顶部纺织品层和底部纺织品层。导电线被编织到顶部纺织品层和底部纺织品层中。当顶部纺织品层与底部纺织品层结合时,来自各层的导电线形成电容触摸传感器,其被配置为检测触摸输入。
在操作期间,该电容触摸传感器可以被配置为使用自电容感测或投射电容感测来确定导电线的网格上的触摸输入的位置。
当配置为自电容传感器时,纺织品控制器通过向每个导电线施加控制信号(例如,正弦信号)来对交叉的导电线(例如,水平和垂直导电线)进行充电。当诸如用户手指的物体触摸导电线的网格时,被触摸的导电线被接地,这改变了被触摸的导电线上的电容(例如,增大或减小了电容)。
因此,本发明的一个目的是创建一种织物传感器,该织物传感器避免了死区,并且使得所有织物区域都有对信号拾取作出贡献。
该目的和其他目的通过根据独立权利要求的织物传感器来实现。
从属权利要求描述了优选和/或特别有利的方面。
技术实现要素:
本公开的实施方式提供了一种电容触摸织物传感器,其包括织物层和高电阻材料涂层,该电阻涂层涂覆织物层,其中,织物传感器还包括多个电极,所述多个电极叠加到织物层上,所述多个电极与第一电阻材料涂层电耦合,每个电极通过电连接而连接到电子控制单元,该电子控制单元配置为评估电阻层的电容变化,该变化是电容触摸织物传感器上触摸活动的指示。
该实施方式的优点在于,以这种方式,创建了电容触摸织物传感器,尽管有限或离散数量的实际感测引脚或点连接到该传感器,该传感器有效地将织物的整个表面区域用作传感器。
因此创建了具有离散读出点的触摸板,由于高度受控的高电阻涂层,该触摸板的灵敏度分布在整个表面上。
与现有技术的设计相比,使用这样的电阻涂层来在整个织物区域上扩展离散电极的灵敏度使得位置灵敏度具有更高的精度,在现有技术的设计中,感测元件的灵敏度仅限于其自身而不向外扩展,这是因为感测元件之间的区域是被无灵敏度的普通纱填充的死区。
根据本公开的一个实施方式,一种在织物传感器上检测触摸活动的方法,该方法包括:
-在织物传感器上提供织物层;
-提供高电阻材料涂层,该电阻涂层涂覆所述织物层;
-提供叠加在织物层上的多个电极,该多个电极与第一电阻材料涂层电耦合;
-评估由多个电极提供的电容变化;
-根据由多个电极提供的电容变化来确定触摸活动。
附图说明
现在将参考附图通过示例的方式描述各种实施方式,其中:
图1示出了本发明一实施方式的截面图;
图2示出了本发明一实施方式的截面图,以说明本发明的构思;
图3示出了本发明一实施方式的示意模型;
图4示出了本发明一实施方式的示意图;
图5示出了本发明另一实施方式及其可能用途的示意模型;
图6示出了本发明另一实施方式及其可能用途的示意模型;
图7示出了本发明另一实施方式及其可能用途的示意模型;和
图8-10示出了关于灵敏度边界的本发明实施方式的示意图。
具体实施方式
现在将参考附图描述示例性实施方式,但不意图限制应用和使用。
现在将首先参考图1来描述本发明,图1是本发明一实施方式,即总体上用附图标记10表示的电容织物传感器的截面图。
电容织物传感器10用作大面积触摸织物传感器。
电容织物传感器10包括第一高电阻材料涂层20,该第一层20用于涂覆织物层30。电阻涂层可以丝网印刷在织物层30上。
电容织物层30可以是织造织物。
电容织物传感器10还包括多个电极40,其优选地印刷在织物层30上并且涂覆有高电阻材料涂层的第一层20。
通常,电极40与第一电阻材料涂层20电耦合。
每个电极通过电连接50连接到电子控制单元450。
电连接50可以是由选自钢,具有碳杂质的尼龙或铜的材料制成的连接线,并且可以是绝缘的或非绝缘的。
因此,涂层20是高电阻电极间耦合介质,并且用作印刷在织物层30上的绝缘化或非绝缘化导电或低电阻纱40或带的1d或2d阵列上的涂层。
电阻涂层20例如可以至少部分地由选自下组的聚合物来实现:聚丙烯酸酯,聚胺和聚氨酯。
在本发明的另一个实施方式中,电阻涂层20可以由同一申请人在ep18197348.8中描述的生物聚合物来实现,该文献通过引用结合于此。
特别地,生物聚合物可以选自微生物纤维素,微生物胶原,纤维素/几丁质共聚物,微生物丝及其混合物,并且优选地是微生物纤维素。
可以将导电材料施加到生物聚合物上。
有利地,可以调节提供给至少一部分生物聚合物的导电材料的量,从而以精确和可靠的方式获得期望的电阻值。
所述导电材料可以是含碳材料,优选其选自下组:活性碳,高表面积碳,石墨烯,石墨,活性炭,碳纳米管,碳纳米纤维,活性碳纤维,石墨纤维,石墨纳米纤维,炭黑,及其混合物。
以这种方式,创建了电容触摸织物传感器,尽管有限或离散数量的实际感测引脚或点作为电极连接到该传感器,该传感器有效地将织物10的整个表面区域用作传感器。
因此创建了具有离散读出点的触摸板,由于高度受控的高电阻涂层,该触摸板的灵敏度/灵敏位点分布在整个表面上。
所描述的配置通过使所有织物区域都有对信号拾取作出贡献来避免死区。
读出可以是二进制的或模拟的,具体取决于应用的细节。
电容触摸织物传感器10的电容值可以例如通过测量充电时间或振荡器(例如,科尔皮兹(colpitts)振荡器)的振荡频率或通过本领域已知的其他测量技术来评估。
图2示出了本发明的一个实施方式的截面图,以说明本发明的构思。
在图2中,示出了两个与涂层20电接触并隔开距离d[n]的电极。
两个相邻电极提供两个不同的电二进制读出信号ch-1和ch-2。在电极之间,设置电阻涂层20,以使电极之间的所有区域对触摸活动敏感。在没有这种电阻涂层的情况下,仅电极40对触摸活动敏感,这减小了对触摸活动有效敏感的面积。读出可以是二进制的(如图2所示)或模拟的。
由于涂层具有高电阻性,当触摸点远离相应的电极时,与触摸活动相关的信号会从相应的电极解耦,因为刺激逐渐变得与最初的最近电极无关,而与当前的最近电极相关性更高。
可以这样调整介质的电阻率(或实际上是表面电阻),以使电阻足够高,从而避免相邻的传感器电极或集电极短路,但是电阻又足够低,以实现触摸活动的最大可能的拾取/寄生耦合。
可以通过以下公式获得电极提供适当信号的有效距离:
其中e是有效距离,d[n]是两个相邻电极20之间的距离,并且
可以借助于图3来使得以上情况可视化,图3显示了图2中示意性示出的本发明实施方式的示意性模型。
在该模型中,一系列电阻性元件ri放置在相邻电极40之间。当触摸活动或刺激靠近其中一个电极时,该电极变得相关性更高,并根据触摸活动与电极的接近程度产生更高的输出。当刺激位于两个电极的中间时,两个通道(1和2)将同时触发。读出可以是二进制的或模拟的。
图4示出了本发明的一个实施方式,特别是其工作原型的示意图。
示出了织物条30,其中织物条30涂覆有电阻涂层20,电阻涂层20也覆盖多个电极40。
电极40进而通过相应的连接线50连接到电子控制单元(ecu)450。
ecu450可以包括与存储系统和接口总线通信的数字中央处理单元(cpu)。cpu被配置为执行作为程序存储在存储系统460中的指令,并且向接口总线发送信号/从接口总线接收信号。
所描述的原型允许理解本发明的工作范围。
图5示出了本发明另一实施方式及其可能用途的示意模型。
在图5中,一块织物涂覆有电阻涂层20,并且例如,三个电极40电连接到这种电阻涂层20。
各电极40借助于各自的连接线50连接至ecu450(为简单起见未示出),以提供信号a,b和c。
所使用的织物中没有导电纱,没有实际的集电极或传感电极,只有单一的一块涂层20,该涂层仅在任意选择的一个边缘上等距的点上连接到模拟读出电子设备。施加在图示的感测性能的正方形或矩形区域上的手势由电子控制单元(ecu)450拾取,并由存储在存储系统中的软件进行解释。
图5还显示了解释逻辑。
例如,如果ecu450检测到诸如左下图所示的电容信号的模式,则ecu450会将这种模式解释为从点j到点k的轻扫手势。
如果ecu450检测到诸如右下图所示的信号模式,则ecu450会将这种模式解释为从点k到点l的轻扫手势。
图6示出了本发明另一实施方式及其可能用途的示意模型。
在图6中,一块织物涂覆有电阻涂层20,并且例如,两个电极40电连接到这种电阻涂层20。
各电极40借助于各自的连接线50连接至ecu450(为简单起见未示出),以提供信号a和b。
例如,如果ecu450检测到诸如左上图所示的信号模式,则ecu450会将这种模式解释为从点j到点k的轻扫手势,而如果ecu450检测到诸如右上图所示的信号模式,则ecu450会将这种模式解释为从点j到点l的轻扫手势。
如果ecu450检测到诸如左下图所示的信号模式,则ecu450会将这种模式解释为从点k到点l的轻扫手势,而如果ecu450检测到诸如右下图所示的信号模式,则ecu450会将这种模式解释为从点m到点n的轻扫手势。
图7示出了本发明的另一实施方式及其可能用途的示意模型,具体来说涉及具有高电阻率涂层20和与该涂层电接触并相对于彼此成120°放置的三个电极40的圆形织物传感器10。
各电极40借助于各自的连接线50连接至ecu450(为简化起见未示出),以提供信号a,b和c。
例如,如果ecu450检测到诸如左下图所示的信号模式,则ecu450会将这种模式解释为从点k到点l的轻扫手势。
如果ecu450检测到诸如右下图所示的信号模式,则ecu450会将这种模式解释为从点k到点m的轻扫手势。
因此,一般根据由多个电极40提供的电容变化来确定触摸手势。
特别地,通过将由电极40提供的电容值视为所述手势与所述电极40的接近度的量度来解释触摸手势。
图8示出了关于灵敏度边界的本发明实施方式的示意图。
在图8中,织物传感器10具有圆形形状,其设置有高电阻率涂层以及与该涂层电接触并相对于彼此成120°放置的三个电极a,b和c。
各电极a,b和c限定了各自的影响区域a’,b’和c’,灵敏度边界ab,ac和bc可以通过以下方式定义:在传感器上的任何位置,信号的某些组合根据该位置被拾取。
图9示出了关于灵敏度边界的本发明另一实施方式的示意图。
在图9中,织物传感器10具有矩形形状,其设置有高电阻率涂层以及与该涂层电接触并相对于彼此间隔一段距离放置的六个电极a,b,c,d,e和f。
各电极限定了各自的影响区域a’,b’,c’,d’,e’和f”,灵敏度边界ab,ac,ad,de,ef和cf可以通过以下方式定义:在传感器上的任何位置,信号的某些组合根据该位置被拾取。
最后,图10示出了关于灵敏度边界的本发明另一实施方式的示意图。
在图10中,织物传感器10具有正方形形状,其设置有高电阻率涂层以及与该涂层电接触并相对于彼此间隔一段距离放置的四个电极a,b,c和d。
各电极限定了各自的影响区域a’,b’,c’和d’,灵敏度边界ab,ac,bd和cd可以通过以下方式定义:在传感器上的任何位置,信号的某些组合根据该位置被拾取。
在所有附图中,仅出于说明性目的表示了灵敏度边界,只是说明其可以用于本发明以提供在其整个表面上都有活性的电容织物传感器。
尽管在以上发明内容和具体实施方式中已经描述了至少一个示例性实施方式,但是应当理解,存在大量的变型。还应当理解,一个或多个示例性实施方式仅是示例,并且无意以任何方式限制范围,适用性或配置。相反,前述发明内容和具体实施方式将为本领域技术人员提供用于实施至少一个示例性实施方式的便利路线图,应理解,可以对示例性实施方式中描述的元件的功能和布置进行各种改变,而不会背离所附权利要求书及其合法等同物中所阐明的范围。