一种考虑有界测量误差的桁架结构动载荷识别方法与流程

文档序号:21931901发布日期:2020-08-21 14:57阅读:215来源:国知局
一种考虑有界测量误差的桁架结构动载荷识别方法与流程

本发明涉及一种动载荷识别的技术领域,尤其是一种考虑有界测量误差的桁架结构动载荷识别方法。



背景技术:

桁架结构广泛应用于各类军用与民用领域,如高压电塔架等,其分析、设计、优化与控制等都需要精确的外部载荷信息,在诸多工况下,桁架结构所受的动载荷难以直接测量或不可直接测量,如地震载荷、风载荷等;相比较而言,动载荷作用于桁架结构上所产生的响应(如位移响应、速度响应、加速度响应、应变等)则易于测量,从而可以通过测量得到的响应信息与桁架结构的动态特性来识别动载荷;然而,由于测量技术、测量设备等因素限制,在响应信息测量过程中不可避免地存在测量误差,对相同激励作用的同一个桁架结构而言,每次测量得到的响应信息存在一定差异,在有界测量误差条件下桁架结构在任意时刻的响应在一个有界范围内波动,因此采用现有方法通过多次测量得到的动载荷识别结果与对应的真实载荷之间存在的误差具有未知性,所得结果不够可靠,且识别过程也较为复杂。



技术实现要素:

本发明所要解决的技术问题是提供一种测量结果可靠、测量过程方便的考虑有界测量误差的桁架结构动载荷识别方法。

本发明解决上述技术问题所采用的技术方案为:一种考虑有界测量误差的桁架结构动载荷识别方法,包括以下步骤:

①获取桁架结构的材料参数、几何参数、固定方式、待识别动载荷的数量l和作用位置,建立桁架结构的有限元模型,定义有限元模型的刚度矩阵为k,定义有限元模型的质量矩阵为m,定义结构阻尼为c,c=αk+βm,其中,α和β分别是给定的瑞利阻尼参数,定义作用于桁架结构上的待识别动载荷为f(1)(t),f(2)(t),…f(l)(t),定义f(1)(t)在有限元模型的所有载荷向量中的序号是定义f(2)(t)在有限元模型的载荷向量中的序号是定义f(l)(t)在有限元模型的载荷向量中的序号是

②在桁架结构上预先选定测量区域,由测量人员通过在桁架结构上的测量区域内选定测量点测量获取h个区间位移其中h≥l,定义在有限元模型中的位移向量的序号为k1,在有限元模型位移向量中的序号为k2,在有限元模型位移向量中的序号为kh,

将[0,t0]等分为q个小时间段,每个小时间段的时间步长表示为δt,获得q+1个离散时刻0,δt,2δt,…,qδt,将在每个离散时刻δt,2δt,…,qδt的取值表示为列向量在离散时刻δt,2δt,…,qδt的取值表示为列向量在离散时刻δt,2δt,…,qδt的取值表示为列向量按顺序排列组成一个列向量并定义为区间位移向量yi,定义yi的中点向量为yc

③根据k和质量矩阵m获取有限元模型的模态集合并记为其中n为有限元模型的自由度,j表示有限元模型的自由度索引值,1≤j≤n,表示第j阶模态,定义第j阶的模态质量为mpj,定义第j阶的模态刚度为kpj,其中t表示矩阵转置符号,定义第j阶的固有频率为定义第j阶的模态阻尼为cj=αkpj+βmpj,定义第j阶的阻尼比为定义第j阶的阻尼固有频率为设定测量时间段为[0,t0],定义在测量时间段内的任意时刻t时第j阶的脉冲响应为gj(t),0≤t≤t0,其中,e表示自然常数;

④定义传递函数矩阵为g,

其中,

其中,的第k1个分量,的第个分量,的第个分量,的第kh个分量,的第个分量,的第kh个分量,的第个分量;

⑤根据g和yc获取函数的最小值点并记为αc,

其中||·||表示向量的2-范数,tr(·)表示矩阵的迹,i是行数为h×q的单位矩阵,i'是行数为l×q的单位矩阵,进一步获得区间载荷中点向量fc=(gtg+αci')-1gtyc

⑥定义基准波动量其中e表示元素都为1且维数与fc相同的向量,将g中的所有取值为负的元素修正为零获得新矩阵g+,将g中的所有取值为正的元素修正为零获得新矩阵g-

初始化常数值λu,判断当中的每一行的区间分量是否包含yi中对应的相同行的区间分量,若是则执行步骤⑦,若否则增大λu直至的每一行组成的区间分量包含yi中对应的相同行的区间分量后,执行步骤⑦;

⑦当λl=0时获得初始的当前波动因子区间[λlu],判断当前波动因子区间的长度小于ε=10-3是否成立,若成立则执行步骤⑨,若不成立,则执行步骤⑧;

⑧将波动因子λ取值为当前波动因子区间的中点,获得区间载荷根据获得诱导区间响应判断的每一行的区间分量是否包含yi中对应的相同行的区间分量,若的每一行的区间分量包含yi中对应的相同行的区间分量,则将当前波动因子区间更新为并返回执行步骤⑦,若存在的其中一行的区间分量不包含yi中对应的相同行的区间分量,则将当前波动因子区间更新为并返回执行步骤⑦;

⑨将波动因子λ的最优值取为波动因子区间的上界并记为λopt,获得载荷fr=λoptfδ,进一步获得区间载荷向量为fi=[fc-fr,fc+fr],其中fi的第1个元素至第q个元素为待识别动载荷f(1)(t)在离散时刻0,δt,...,(q-1)δt的范围,fi的第q+1个元素至第2q个元素为待识别动载荷f(2)(t)在离散时刻0,δt,...,(q-1)δt的范围,fi的第(l-1)q+1个元素至第lq个元素为待识别动载荷f(l)(t)在离散时刻0,δt,...,(q-1)δt的范围,最终完成待识别动载荷的识别。

所述的步骤②中,当t0=10s,q=200。t0和q根据需要选择,增大q增大计算量的同时可以提升精度。

所述的步骤③中,n为有限元模型的自由度即为k的行数。

所述的步骤⑥中,λu=0.05或λu=0.01。

与现有技术相比,本发明的优点在于首先获取桁架结构的材料参数、几何参数、固定方式、待识别动载荷的数量l和作用位置,建立桁架结构的有限元模型,再在桁架结构上预先选定测量区域,由测量人员通过在桁架结构上的测量区域内选定测量点测量获取h个区间位移,并得到区间位移向量的中点向量,随后构造传递函数矩阵,获取区间载荷中点向量和区间载荷半径,获得区间载荷时间历程,最终完成待识别动载荷的识别;

以上方法通过对桁架结构上选定方便直接测量的测量区域内选定测量点测量获取多个区间位移,间接实现对待识别动载荷的识别,过程中利用了有界区间来描述桁架结构响应的测量误差,给出了桁架结构响应的有界测量误差对动载荷识别结果的影响规律,所得识别结果为真实动载荷所落入的范围,识别结果更加可靠,为桁架结构的分析、设计、优化与控制过程提供更可靠有效的依据,且识别过程简洁方便,适用于小样本测量数据条件下的动载荷识别问题,还适用于难以精确地测量响应信息条件下的桁架结构动力学分析、设计、优化与控制领域的外部激励的确定,经过模拟实验可得,真实载荷完全位于以上方法最终给出的区间载荷向量对应的范围内,在有界测量误差条件下实现了动载荷的准确识别。

附图说明

图1为本发明的步骤原理图;

图2为实施例中的十二杆空间刚架结构;

图3为实施例中考虑有界测量误差的测量区间响应时间历程;

图4为实施例中对动载荷的识别结果。

具体实施方式

以下结合附图实施例对本发明作进一步详细描述。

一种考虑有界测量误差的桁架结构动载荷识别方法,包括以下步骤:

①获取桁架结构的材料参数、几何参数、固定方式、待识别动载荷的数量l和作用位置,建立桁架结构的有限元模型,定义有限元模型的刚度矩阵为k,定义有限元模型的质量矩阵为m,定义结构阻尼为c,c=αk+βm,其中,α和β分别是给定的瑞利阻尼参数,如α=0.1,β=0.0001,定义作用于桁架结构上的待识别动载荷为f(1)(t),f(2)(t),…f(l)(t),定义f(1)(t)在有限元模型的所有载荷向量中的序号是定义f(2)(t)在有限元模型的载荷向量中的序号是定义f(l)(t)在有限元模型的载荷向量中的序号是

②在桁架结构上预先选定测量区域,由测量人员通过在桁架结构上的测量区域内选定测量点测量获取h个区间位移yi(1)(t),yi(2)(t),…,yi(h)(t),其中h≥l,定义在有限元模型中的位移向量的序号为k1,在有限元模型位移向量中的序号为k2,在有限元模型位移向量中的序号为kh,

将[0,t0]等分为q个小时间段,每个小时间段的时间步长表示为δt,获得q+1个离散时刻0,δt,2δt,...,qδt,将在每个离散时刻δt,2δt,...,qδt的取值表示为列向量在离散时刻δt,2δt,...,qδt的取值表示为列向量在离散时刻δt,2δt,...,qδt的取值表示为列向量按顺序排列组成一个列向量并定义为区间位移向量yi,定义yi的中点向量为yc;其中,当t0=10s,q=200,t0和q根据实际需要选择,增大q增大计算量的同时可以提升精度,区间位移定义为:任意时刻位移响应在有界范围内波动的位移,中点向量指区间位移向量的区间上界与区间下界的平均值点组成的向量。

③根据k和质量矩阵m获取有限元模型的模态集合并记为其中n为有限元模型的自由度,步骤②中,n为有限元模型的自由度即为k的行数,j表示有限元模型的自由度索引值,1≤j≤n,表示第j阶模态,定义第j阶的模态质量为mpj,定义第j阶的模态刚度为kpj,其中t表示矩阵转置符号,定义第j阶的固有频率为定义第j阶的模态阻尼为cj=αkpj+βmpj,定义第j阶的阻尼比为定义第j阶的阻尼固有频率为设定测量时间段为[0,t0],定义在测量时间段内的任意时刻t时第j阶的脉冲响应为gj(t),0≤t≤t0,其中,e表示自然常数。

④定义传递函数矩阵为g,

其中,

其中,的第k1个分量,的第个分量,的第个分量,的第kh个分量,的第个分量,的第kh个分量,的第个分量;

⑤根据g和yc获取函数的最小值点并记为αc,其中||·||表示向量的2-范数,tr(·)表示矩阵的迹,i是行数为h×q的单位矩阵,i'是行数为l×q的单位矩阵,进一步获得区间载荷中点向量fc=(gtg+αci')-1gtyc

⑥定义基准波动量其中e表示元素都为1且维数与fc相同的向量,将g中的所有取值为负的元素修正为零获得新矩阵g+,将g中的所有取值为正的元素修正为零获得新矩阵g-

初始化常数值λu,判断当中的每一行的区间分量是否包含yi中对应的相同行的区间分量,若是则执行步骤⑦,若否则增大λu直至的每一行组成的区间分量包含yi中对应的相同行的区间分量后,执行步骤⑦;λu通常取值为λu=0.05或λu=0.01,也可根据实际情况调整大小。

⑦当λl=0时获得初始的当前波动因子区间[λlu],判断当前波动因子区间的长度小于ε=10-3是否成立,若成立则执行步骤⑨,若不成立,则执行步骤⑧。

⑧将波动因子λ取值为当前波动因子区间的中点,获得区间载荷根据获得诱导区间响应判断的每一行的区间分量是否包含yi中对应的相同行的区间分量,若的每一行的区间分量包含yi中对应的相同行的区间分量,则将当前波动因子区间更新为并返回执行步骤⑦,若存在的其中一行的区间分量不包含yi中对应的相同行的区间分量,则将当前波动因子区间更新为并返回执行步骤⑦;

⑨将波动因子λ的最优值取为波动因子区间的上界并记为λopt,获得载荷fr=λoptfδ,进一步获得区间载荷向量为fi=[fc-fr,fc+fr],其中fi的第1个元素至第q个元素为待识别动载荷f(1)(t)在离散时刻0,δt,...,(q-1)δt的范围,fi的第q+1个元素至第2q个元素为待识别动载荷f(2)(t)在离散时刻0,δt,...,(q-1)δt的范围,fi的第(l-1)q+1个元素至第lq个元素为待识别动载荷f(l)(t)在离散时刻0,δt,...,(q-1)δt的范围,最终完成待识别动载荷的识别。

以下采用上述方法对桁架结构的动载荷进行识别的模拟应用举例:以图2所示的底边四个点固定支撑的十二杆空间桁架结构为对象,材料参数包括:材料密度为7800千克/立方米、杨氏模量为210gpa;几何参数包括:杆件长度如图所示,杆件横截面积为1平方厘米;桁架结构在底端4个节点处固定;待识别动载荷个数为1,作用于节点7的y轴方向,选择欧拉-伯努利梁模拟刚架结构中每个圆柱形杆件的变形特性,建立刚架结构的有限元模型,瑞利阻尼参数给定为α=0.1,β=0.0001,在时间段[0,10]秒内识别外部载荷,时间步长为δt=0.05秒,,测量节点5处y方向的位移响应;考虑有界测量误差条件下,测量区间响应时间历程如图3所示,初始化波动因子区间为[0,0.05],阈值为ε=10-3,最终获得最优波动因子λopt=0.0245,利用本发明方法识别的动载荷的区间时间历程以图4表示,从识别结果可以看出:真实载荷完全位于以上实施例的方法给出的界限内,在有界测量误差条件下实现了动载荷的可靠识别。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1