基于位移场监测数据的大坝力学参数随机反演方法及系统与流程

文档序号:22314380发布日期:2020-09-23 01:37阅读:247来源:国知局
基于位移场监测数据的大坝力学参数随机反演方法及系统与流程
本发明属于大坝安全领域,具体是一种基于位移场监测数据的大坝力学参数随机反演方法及系统。
背景技术
:当前,世界范围内已建成大量的高坝工程,如中国的锦屏一级混凝土拱坝,三峡混凝土重力坝,瑞士的大迪克桑斯重力坝,以及美国的胡佛重力拱坝等。这些高坝工程在防洪、发电、航运、灌溉和供水等方面发挥着至关重要的作用,产生了非常显著的社会和经济效益。大坝在产生巨大工程效益的同时,其工作性态也会随着服役时间的增长而不断变化,会出现一些隐患。部分工程中出现的坝基失稳、坝体开裂、渗透破坏等问题,给相关国家带来了惨重的灾害和巨大的损失。奥地利科恩布莱恩、美国德沃夏克、前苏联萨扬舒申斯克等高坝都发生过严重开裂漏水,修补加固费用巨大;法国马尔帕塞拱坝因坝肩失稳发生溃决,给生命、财产带来巨大损失;中国也有高混凝土坝发生严重裂缝、高压水劈裂等影响安全的实例。因此,对大坝进行合理有效的检查、监控、评价、维护,对确保大坝安全和公共安全具有十分重要的意义。大坝安全监测数据中含有大量丰富的信息,是大坝结构状态的综合表现,受多种因素的叠加影响。依据实测资料对大坝原型进行反分析,可对大坝前期的设计施工方案进行检验,对当下的工作性态进行评价,对未来的发展趋势进行预测;从而为及时评估和发现大坝的异常迹象提供充分依据,在此基础上制定恰当的水库控制运行计划和大坝的维护管理措施来确保大坝的运行安全,在发生险情时及时发布警报以避免事故的发生。当前,对大坝结构的反演分析一般是基于各种确定性的数学模型,反演的力学参数某种程度上只能说是较好地反映实际工程情况的“等效参数”。作为挡水建筑物,大坝从建设到运行期间经历复杂内部外部条件变化,本质是一个受多种因素影响的不确定性系统。大坝监测信息的不确定性,主要由本身材料力学参数引起的响应量的摄动和观测误差这两部分组成,而目前的相关分析,没有对观测误差进行识别和剔除。因此,做好监测资料的分析工作,从观测信息中分离出有用的信息,找出影响坝体结构性态的主要因素,才能准确掌握大坝的安全运行状态。技术实现要素:本发明的目的是针对现有技术存在的问题,提供一种基于位移场监测数据的大坝力学参数随机反演方法及系统,能对混凝土坝自动化监测信息进行实时处理,对大坝的真实安全状态进行反馈为实现上述目的,本发明采用的技术方案是:一种基于位移场监测数据的大坝力学参数随机反演方法,包括以下步骤:获取大坝各测点的监测数据,对所述监测数据进行预处理;根据预处理后的监测数据,建立各测点大坝变形的统计模型;利用所述统计模型,分离大坝位移监测数据中的水压分量;调用大坝的有限元模型计算对应水荷载下的大坝位移场;采用一阶摄动随机反演方法或二阶摄动随机反演方法,并调用智能优化算法计算大坝力学参数的平均值和方差;输出反演结果。具体地,分离大坝位移监测数据中的水压分量的方法为:在统计模型中将大坝径向位移δ按照成因分为水压分量、温度分量和时效分量,在位移δ中扣除温度分量和时效分量后,得到水压分量如下式所示:δh=δ-δt-δθ(1)其中,δh为大坝径向位移δ中的水压分量;δt为大坝径向位移δ中的温度分量;δθ为大坝径向位移δ中的时效分量。具体地,采用一阶摄动随机反演方法计算大坝力学参数的平均值和方差的方法为:式中e为数学期望,将式(6)代入式(4)中,可得,定义目标函数为:一阶摄动随机反演的准则为目标函数取得最小值,即在方差最小的意义下,结合优化算法对参数均值进行识别,为x取均值下的位移计算值;所述随机变量x的方差反演方法为:对于某一观测时刻k,k=1,2,···,m,令式中,为n×p矩阵,则式(5)可写为:式中,δ(x,yk)为n×1列阵,{εxk}为p×1列阵,式(10)变换得,将上式两端分别乘以得,变换得,随机变量的方差为:将式(12)的计算结果代入式(10),可得对于某一观测时刻k,由随机变量引起的位移摄动为:式中,{εδxk}为n×1列阵;对于某时刻k,观测误差为:{εfk}={εδk}-{εδxk}(16)联立上述公式(2)至(16),即可计算各测点由随机变量引起的位移方差var(δx)统计值,以及由观测工作产生的位移方差var(δf)统计值。可选地,采用二阶摄动随机反演方法计算大坝力学参数的平均值和方差的方法为:将δ(x,y)在均值处进行包含二次项的taylor展开,在不考虑随机变量相关条件下,有:对上式取均值,有:对某一观测时刻k,k=1,2,···,m,令:则式(17)可写为:此时,目标函数为:式中ajk为矩阵ak的第j行,j=1,2,···,n,即ajk为1×p列阵;根据目标函数,即在方差最小的意义下,结合优化算法对二阶意义下的参数均值进行反演;此时是未知的,采用一阶意义下的估计作为估计初值,进行均值计算;所述随机变量x的方差反演方法为:式(20)可改写为:式中为n×1列阵;定义目标函数lk为:式中bjk为矩阵bk的第j行,j=1,2,···,n,即bjk为1×p列阵;cjk为矩阵ck的第j行,j=1,2,···,n,即cjk为1×p列阵;在目标函数lk最小的意义下,对{εxk}进行求解,此时{εxk}满足方程组:上式方程组展开后得:式中ajik是ajk的第i个数,i=1,2,···,p;上式可简化为:此时式中ak,bk,ck为n×1列阵;上式(26)展开得:根据卡尔丹公式求得一元三次方程的三个根,选目标函数最小的实根作为最终解;此外对于多参数反演问题,调用优化函数直接对4次多项式目标函数进行寻优求解{εxk};进一步可得随机变量的方差为:根据上式求出后代入式(21),反复迭代,最终达到和时结束迭代;此时求出和即为反演的参数和方差。与上述反演方法相对应的,本发明还提供了一种基于位移场监测数据的大坝力学参数随机反演系统,包括数据库模块,结构信息模块,随机反演模块和信息展示模块;所述数据库模块用于存储大坝的基础信息数据和各类监测数据;所述结构信息模块用于存放大坝工程的结构模型信息;所述随机反演模块用于对大坝力学参数的均值和方差进行计算;所述信息展示模块用于展示大坝的模型、监测数据和反演结果。具体地,所述数据库模块包括大坝基础信息模块、地理空间信息模块和监测信息模块;所述大坝基础信息模块用于记载有工程概况、水库大坝设计、施工、运行相关资料;所述地理空间信息模块用于记载水文和地质情况统计资料和工程地质勘察试验资料;所述监测信息模块用于记载各类监测设备的原始测值,主要包括:环境量监测数据、变形监测数据、渗流监测数据和压力(应力)监测数据。具体地,所述结构模型信息包括工程几何模型信息和有限元模型信息。具体地,所述随机反演模块包括数据前处理模块,智能优化算法模块,一阶摄动随机反演模块和二阶摄动随机反演模块;所述监测数据前处理模块,用于建立测点变形统计模型,分离得到测点变形的水压分量;所述智能优化算法模块包括粒子群算法、灰狼算法、鲸鱼优化算法、蚁群算法、人工鱼群算法等智能寻优算法;可通过gui及按钮触发群智能寻优算法选择框进行选择;所述一阶摄动随机反演模块用于对一阶摄动意义下力学参数的均值和方差进行识别;所述二阶摄动随机反演模块用于进一步对二阶摄动意义下力学参数的均值和方差进行识别。具体地,所述信息展示模块包括模型轻量化展示、监控信息浏览和评估结果输出功能;其中,借助于bimface轻量化模型转换功能,将所建立的大坝及监测测点三维信息模型在web端进行展示,同时,可通过浏览器查看大坝监测测点信息和实时评估的结果信息。与现有技术相比,本发明的有益效果是:(1)本发明提出的随机反演方法考虑了大坝结构力学性质的不确定性以及观测误差的不确定性,联合空间多测点位移,能够对大坝结构力学参数进行准确识别;(2)本发明通过随机反演方法能够将大坝的真实位移量和观测误差进行分离,提高数据的精确度和评估结果的可信度;(3)本发明提出的随机反演系统能对大坝的自动化监测数据进行全链条处理,对大坝的真实安全状态进行实时反馈,从而协助技术人员高效地完成大坝安全监测及管理工作,具有重要的社会经济效益。附图说明图1为本发明一种基于位移场监测数据的大坝力学参数随机反演方法的流程图;图2为本发明一种基于位移场监测数据的大坝力学参数随机反演系统的结构框图;图3为本发明实施例中某碾压混凝土坝11#坝段有限元模型图;图4为本发明实施例中大坝各测点变形的水压分量分离结果示意图;图5为本发明实施例中垂线pl11-1测点位移反馈结果示意图。具体实施方式下面将结合本发明中的附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施例,都属于本发明保护的范围。如图1所示,本实施例提供了一种基于位移场监测数据的大坝力学参数随机反演方法,包括以下步骤:获取大坝各测点的监测数据,对所述监测数据进行预处理;根据预处理后的监测数据,建立各测点大坝变形的统计模型;利用所述统计模型,分离大坝位移监测数据中的水压分量;调用大坝的有限元模型计算对应水荷载下的大坝位移场;采用一阶摄动随机反演方法或二阶摄动随机反演方法,并调用智能优化算法计算大坝力学参数的平均值和方差;输出反演结果。具体地,分离大坝位移监测数据中的水压分量的方法为:在统计模型中将大坝径向位移δ按照成因分为水压分量、温度分量和时效分量,在位移δ中扣除温度分量和时效分量后,得到水压分量如下式所示:δh=δ-δt-δθ(1)其中,δh为大坝径向位移δ中的水压分量;δt为大坝径向位移δ中的温度分量;δθ为大坝径向位移δ中的时效分量。具体地,采用一阶摄动随机反演方法计算大坝力学参数的平均值和方差的方法为:式中e为数学期望,将式(6)代入式(4)中,可得,定义目标函数为:一阶摄动随机反演的准则为目标函数取得最小值,即在方差最小的意义下,结合优化算法对参数均值进行识别,为x取均值下的位移计算值;所述随机变量x的方差反演方法为:对于某一观测时刻k,k=1,2,···,m,令式中,为n×p矩阵,则式(5)可写为:式中,δ(x,yk)为n×1列阵,{εxk}为p×1列阵,式(10)变换得,将上式两端分别乘以得,变换得,随机变量的方差为:将式(12)的计算结果代入式(10),可得对于某一观测时刻k,由随机变量引起的位移摄动为:式中,{εδxk}为n×1列阵;对于某时刻k,观测误差为:{εfk}={εδk}-{εδxk}(16)联立上述公式(2)至(16),即可计算各测点由随机变量引起的位移方差var(δx)统计值,以及由观测工作产生的位移方差var(δf)统计值。可选地,采用二阶摄动随机反演方法计算大坝力学参数的平均值和方差的方法为:将δ(x,y)在均值处进行包含二次项的taylor展开,在不考虑随机变量相关条件下,有:对上式取均值,有:对某一观测时刻k,k=1,2,···,m,令:则式(17)可写为:此时,目标函数为:式中ajk为矩阵ak的第j行,j=1,2,···,n,即ajk为1×p列阵;根据目标函数,即在方差最小的意义下,结合优化算法对二阶意义下的参数均值进行反演;此时是未知的,采用一阶意义下的估计作为估计初值,进行均值计算;所述随机变量x的方差反演方法为:式(20)可改写为:式中为n×1列阵;定义目标函数lk为:式中bjk为矩阵bk的第j行,j=1,2,···,n,即bjk为1×p列阵;cjk为矩阵ck的第j行,j=1,2,···,n,即cjk为1×p列阵;在目标函数lk最小的意义下,对{εxk}进行求解,此时{εxk}满足方程组:上式方程组展开后得:式中ajik是ajk的第i个数,i=1,2,···,p;上式可简化为:此时式中ak,bk,ck为n×1列阵;上式(26)展开得:根据卡尔丹公式求得一元三次方程的三个根,选目标函数最小的实根作为最终解;此外对于多参数反演问题,调用优化函数直接对4次多项式目标函数进行寻优求解{εxk};进一步可得随机变量的方差为:根据上式求出后代入式(21),反复迭代,最终达到和时结束迭代;此时求出和即为反演的参数和方差。与上述反演方法相对应的,如图2所示,本实施例还提供了一种基于位移场监测数据的大坝力学参数随机反演系统,包括数据库模块,结构信息模块,随机反演模块和信息展示模块;所述数据库模块包括大坝基础信息模块、地理空间信息模块和监测信息模块;所述大坝基础信息模块用于记载有工程概况、水库大坝设计、施工、运行相关资料;所述地理空间信息模块用于记载水文和地质情况统计资料和工程地质勘察试验资料;所述监测信息模块用于记载各类监测设备的原始测值,主要包括:环境量监测数据、变形监测数据、渗流监测数据和压力(应力)监测数据。所述结构模型信息包括工程几何模型信息和有限元模型信息。所述随机反演模块包括数据前处理模块,智能优化算法模块,一阶摄动随机反演模块和二阶摄动随机反演模块;所述监测数据前处理模块,用于建立测点变形统计模型,分离得到测点变形的水压分量;所述智能优化算法模块包括粒子群算法、灰狼算法、鲸鱼优化算法、蚁群算法、人工鱼群算法等智能寻优算法;可通过gui及按钮触发群智能寻优算法选择框进行选择;所述一阶摄动随机反演模块用于对一阶摄动意义下力学参数的均值和方差进行识别;所述二阶摄动随机反演模块用于进一步对二阶摄动意义下力学参数的均值和方差进行识别。所述信息展示模块包括模型轻量化展示、监控信息浏览和评估结果输出功能;其中,借助于bimface轻量化模型转换功能,将所建立的大坝及监测测点三维信息模型在web端进行展示,同时,可通过浏览器查看大坝监测测点信息和实时评估的结果信息。下面以一个工程实例来说明本发明:在中国的西南地区建有一碾压混凝土坝工程。该工程前期建设中,于2007年年底浇筑至坝顶382m高程,其中建基面高程216.43m,坝高165.57m,坝顶宽度14m。坝体上游面折坡点位于270m高程,以下坡度约为1:0.25,下游面坡度约为1:0.70。所述碾压混凝土重力坝工程的各类工程数据存放于数据库模块,可对相关数据执行查询、输出、处理、管理等工作。工程几何模型信息和有限元模型信息存放于结构信息模块。如想了解11#坝段坝基的运行情况,操作步骤如下:步骤(1),输入指令,通过结构信息模块查看并调用该坝段的结构信息、监测仪器布置信息和有限元模型信息;通过查询可知在11#坝段埋设有4个垂线用于监测水位移,坝段有限元模型图及对应测点位置示意图如图3所示;其中在151.5m高程埋设了1个倒垂线(ip-11),在379.2,342,270m高程埋设了3个正垂线(pl11-1,pl11-2,pl11-3,其中pl11-2是一线多垂,包括pl11-2-1和pl11-2-2)。输入指令,从数据库中选取调用11#坝段对应得到监测资料,包括水位等环境量,各测点对应的实测值序列;本实施案例中选取观测序列从2010年6月28日至2013年4月15日,共59组测值。步骤(2),数据前处理模块中对11坝段5个测点的监测数据进行预处理,建立各测点大坝变形的统计模型,并分离得到水压分量,其结果如图4所示。步骤(3),调用结构信息中的有限元计算模型。步骤(4),点击一阶或二阶摄动随机反演模块,本实施案例选择一阶摄动随机反演模块执行一阶摄动随机反演分析。步骤(5),点击智能优化算法模块,本实施案例选择灰狼算法;输入坝体及基岩待反演参数取值范围,设置为坝体弹性模量ec∈[35gpa,55gpa],坝基弹性模量er∈[20gpa,45gpa];终止条件设置为迭代次数为100次。步骤(6),再次点击一阶摄动随机反演模块中的触发按钮进行计算,程序进入迭代过程。步骤(7),点击信息展示模块评估结果输出选择框,查看计算结果;计算结束后输出优化反演结果为:坝体弹性模量均值为45.53gpa,标准差为5.87gpa,变异系数为12.9%;坝基弹性模量均值为31.53gpa,标准差为6.12gpa,变异系数为19.4%。各测点处由随机力学参数引起的位移摄动std(δ′x)和观测误差std(δf′)的分离统计结果如表1所示。表1各测点处位移摄动量的分离统计结果测点ip11pl11-3pl11-2-2pl11-2-1pl11-1std(δ′y)(mm)013028047061081std(δ′f)(mm)008009007009007同时,如图5所示,本实施例为位移反馈结果提供一个概率输出,即大坝测点位移的置信区间。如95%的置信区间可定义为和尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1