一种植物叶片叶脉的分级识别方法与流程

文档序号:22389451发布日期:2020-09-29 17:53阅读:1318来源:国知局
一种植物叶片叶脉的分级识别方法与流程

本发明涉及基因分析生物信息学及图像处理技术领域,尤其涉及一种植物叶片叶脉的分级识别方法。



背景技术:

世界上每一片叶片都有它独特的特征。无论何种物种,叶片的多样性都可以通过脉络结构来研究,脉络结构包括木质部运输水分和营养物质,韧皮部运输光合产物。然而,就其发展和功能而言,脉序仍然具有共同的结构模式,即形成网状网格的叶脉顺序的层次结构。基于叶脉直径和分支,网状层次结构被用来将脉序结构划分为几个层次,如图1所示:主叶脉1、二级叶脉2、三级叶脉3和小叶脉。其中,主叶脉1定义为从叶柄向叶尖方向运行,二级叶脉2定义为间隔分叉,三级叶脉3和小叶脉构成主叶脉1与二级叶脉2之间的网状网。

与上述定义不同的是,在实际工作中,二级叶脉是闭合结构,而不是开放结构。后二级叶脉支在前二级叶脉支的基础上,所有的二级叶脉支形成环绕结构。三级叶脉从二级叶脉或主叶脉分支出,并且从二级叶脉上分支出的分支宽度与主叶脉分出的宽度相等。三级叶脉连通主叶脉与二级叶脉或连通二级叶脉与二级叶脉最近,由于叶片脉络的生态和进化功能网络吸引了广泛的领域专家们越来越浓的兴趣,他们相信叶脉脉序是理解叶脉模式和组织分化的关键,除此之外还提供了一个有价值的网络性质。此外,脉序对物种识别具有重要意义。因此,有必要对叶脉或叶脉网络特征进行提取,以便进一步进行详细的定量分析。



技术实现要素:

本发明要解决的技术问题是针对上述现有技术的不足,提供一种植物叶片叶脉的分级识别方法,实现对叶片叶脉的分级。

为解决上述技术问题,本发明所采取的技术方案是:一种植物叶片叶脉的分级识别方法,包括以下步骤:

步骤1、获取高清晰度的植物叶片图像构成数据集,并通过图像增强、中值滤波和自适应阈值二值化方法对数据集中的叶片图像进行预处理得到二值化叶脉网络图像;

步骤2、使用并行模板匹配骨架提取算法对步骤1得到的二值化图像进行处理得到植物叶片的叶脉骨架网络;

步骤3、删除叶脉骨架的连接像素点并另外保存,将叶脉骨架网络分段为多个小叶脉段,并删除像素数量小于设定阈值的叶脉段,分段后的每条叶脉段均具有自己的特征;

步骤4、将步骤1得到的二值化图像进行距离变换,即将二值化图像中每个像素点的强度值转化为该像素点距离叶脉边界的距离,构成叶脉的距离变换图像;

步骤5、将步骤3得到的叶脉段投影到步骤4的叶脉的距离变换图像中,提取每条叶脉段的多尺度lbp特征;

步骤6、将各级叶脉的标签赋予各叶脉段,构成训练集训练随机森林分类器,对叶脉段进行分类;

将数据集分为训练集和测试集,赋予训练集中每一个叶脉段对应的叶脉等级标签,结合提取的多尺度lbp特征对随机森林分类器进行训练,然后使用随机森林分类器对测试集中的叶脉段进行分类;

步骤7、通过步骤3中保存的叶脉骨架的连接像素点对分类出的叶脉段校正叶脉的分类结果,使同一像素点连接的两条叶脉段为相同等级或次一级,最终得到叶脉分级图像。

采用上述技术方案所产生的有益效果在于:本发明提供的一种植物叶片叶脉的分级识别方法,(1)可以从高清图像中自动分级提取叶脉分级网络,节省了时间和人工成本;(2)可以自动分级提取叶脉,使提取分级叶脉表型,如:叶脉夹角,各级叶脉密度等,成为可能;(3)可以提取复杂的网状叶脉网络,且有完整度比较高;(4)通过多尺度lbp特征进行叶脉段的分类识别,相较于传统lbp方体,提高了识别的准确率。

附图说明

图1为本发明背景技术提供的不同叶脉序的叶片图像示意图;

图2为本发明实施例提供的一种植物叶片叶脉的分级识别方法的流程图

图3为本发明实施例提供的叶脉分级示意图。

图中:1、主叶脉;2、二级叶脉;3、三级叶脉。

具体实施方式

下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。

本实施例以大豆叶片为例,采用本发明的物叶片叶脉的分级识别方法对大豆叶片叶脉进行分级识别。

一种植物叶片叶脉的分级识别方法,如图2所示,包括以下步骤:

步骤1、获取高清晰度的植物叶片图像构成数据集,并通过图像增强、中值滤波和自适应阈值二值化方法对数据集中的叶片图像进行预处理得到二值化叶脉网络图像;

对植物叶片叶脉进行分级识别需要使用叶片的高清图片,因为高清图片在分辨率增强之后叶片图像中叶脉和孔洞具有相当大的对比度。当然不只有一种方法可以得到这样的对比度的图像,如化学清除成像、扫描成像、内窥镜成像或x射线成像。不过,要获取化学清除图像既费时又费力,此外,在x射线成像中静脉细节很难捕捉。因此,本实施例利用聚光成像技术扫描成像获得高分辨率的叶片图像,考虑到叶脉与孔洞之间透光率的差异,叶脉区域可自然增强。因此,本实施例采用epsonperfec-tionv850pro扫描仪的透射扫描模式对大豆叶片进行扫描成像。

本实施例中,大豆叶片数据集采集地点为牡丹江,时间为2017年6月到8月,共采集了249个大豆品种的数据,每个品种采集了5个部位的叶子,每个部位10片叶子。使用反射处理每片叶子的正反面,透射处理正面。其中有198个品种采集了五个部位。36个品种采集了四个部位,8个品种采集了三个部位,1个品种采集了两个部位,6个品种采集了一个部位。叶片图像的总数为34977,构成了庞大的数据集。然后再从这些数据集中选取1200张大豆叶片的rgb图像,总共有200个品种,每个品种有6个来自三个不同植物部位的叶片样本作为最终的数据集。图像是使用分辨率为每英寸600像素的扫描仪拍摄的,并存储为48位rgbtiff图像。

本实施例中,对最终选取的数据集中的大豆叶片图像首先通过图像增强方法,增加叶脉与叶片背景的对比度,凸显叶脉的强度,然后通过中值滤波对图像进行降噪处理,最后使用自适应阈值二值化方法对叶片图像进行二值化处理,得到不受光照影响的清晰的二值化叶脉网络图像。

针对不同方法得到的高清图片,使用不同的预处理方法;对于化学清除图像,采用平均强度的自适应阈值进行预处理;对于正常扫描的图像,使用uhmt方法进行预处理;对于传输图像,由于其与化学清洗图像相似,因此采用中值滤波和自适应阈值二值化,即均值和标准差强度。首先,利用中值滤波去除增强叶图像中的噪声。然后,直接采用已有的自适应阈值算法获取二值脉络网络图像。与平均强度自适应阈值相比,该算法对光照变化具有部分不变性。

步骤2、使用并行模板匹配骨架提取算法对步骤1得到的二值化图像进行处理得到植物叶片的叶脉骨架网络;

图像的骨架化是模式识别中很重要的一个技术,指的是将原本臃肿"的像素简化为单像素相连接的二值图像(即类似骨架的概念),细化的好坏直接影响到后面识别匹配的效率。细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的形状,直到得到图像的骨架。为了后续对叶脉段的识别,本发明选择了并行模板匹配骨架提取算对叶脉网络进行骨架化得到叶脉骨架网络。

使用并行模板匹配骨架提取算法对得到的二值化图像进行处理得到植物叶片的叶脉骨架网络,整个迭代过程分为两步:

(1)对二值化图像不断使用形态学操作中的腐蚀,直到提取出伪骨架(部分区域有两层像素宽度,但已经很接近真实骨架);

(2)从伪骨架中提取真实骨架。

循环上述步骤(1)-(2),直到所有骨架像素不存在两层像素宽度,得到的结果即为二值图像细化后的叶脉骨架网络;

步骤3、删除叶脉骨架的连接像素点并另外保存,将叶脉骨架网络分段为多个小叶脉段,并删除像素数量小于设定阈值的叶脉段,赋予每条叶脉段具有自己的特征;

步骤4、将步骤1得到的二值化图像进行距离变换,即将像素的强度值转化为该像素点距离叶脉边界的距离,构成叶脉的距离变换图像;

将步骤1得到的二值化图像进行距离变换得到叶脉的距离变换图像,将像素的强度值转化为该像素点距离叶脉边界的距离(曼哈顿距离or欧氏距离),得到距离矩阵,那么离叶脉边界越远的点越亮。距离变换的意义是赋予二值化图像中的像素点距离叶脉边界的距离属性,在叶脉中这种属性就是宽度,这样每条叶脉段就就包含了它的方向属性以及宽度属性。

步骤5、将步骤3得到的叶脉段投影到步骤4的叶脉的距离变换图像中,提取每条叶脉段的多尺度lbp特征,也即提取步骤3中得到叶脉段在步骤4得到的距离变换图像中对应点的多尺度lbp特征;

原始的lbp特征定义为在3*3的窗口内,以窗口中心像素值为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于等于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即lbp码,共256种),即得到该窗口中心像素点的lbp值,并用这个值来反映该窗口区域的纹理信息。但是基本的lbp算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。所以本发明选用了多尺度的lbp特征,最大限度的保留叶脉段的局部信息,使其分割的准确率更高。

由以上可以看出,一般lbp算子,讨论的是单个像素与领域像素的差值信息,一般捕捉到的是微观特征,这样是捕捉不到宏观特征的,基于这种考虑,本发明将单个像素上升到区域,以区域为单位,计算区域与区域之间的差值信息。本发明方法提取多尺度lbp特征,相当于结合了微观与宏观的特征,增加了分类的准确度。

步骤6、将各级叶脉的标签赋予各叶脉段,构成训练集训练随机森林分类器,对叶脉段进行分类;

将数据集分为训练集和测试集,赋予训练集中每一个叶脉段对应的叶脉等级标签,结合提取的多尺度lbp特征对随机森林分类器进行训练,然后使用随机森林分类器对测试集中的叶脉段进行分类;

本实施例中,对于训练集中的叶脉图像,根据叶脉层次结构的定义,使用adobephotoshopcs6将这些叶片的叶脉顺序粗标记为真实数据,然后采用固定尺寸的画刷将主叶脉1标记为13个像素宽,二级叶脉2标记为9个像素宽,三级叶脉3标记为5个像素宽,如图3所示。

步骤7、通过步骤3中保存的叶脉骨架的连接像素点对分类出的叶脉段校正叶脉的分类结果,使同一像素点连接的两条叶脉段为相同等级或次一级,最终得到叶脉分级图像。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1