一种用于单级离心鼓风机气动噪声的仿真预测方法与流程

文档序号:22678102发布日期:2020-10-28 12:35阅读:150来源:国知局
一种用于单级离心鼓风机气动噪声的仿真预测方法与流程

本发明属于仿真预测技术领域,尤其涉及一种用于单级离心鼓风机气动噪声的仿真预测方法。



背景技术:

单级离心鼓风机因其高效、节能等优点在污水处理曝气、电厂脱硫脱硝以及氧化工艺等领域得到广泛应用。单级离心鼓风机运行时,其内部高速气流与旋转件(叶轮)、静止件(进出口导叶以及蜗壳等)和进排气管等相互作用,产生具有鼓风机特有的叶片通过频率及其谐波频率的气动噪声,而且此噪音声级高,高频突出,传播距离远,污染范围大,特别是某些噪音的频率与人的内脏器官固有频率相接近,容易引起共振,使人产生头晕、恶心、心律过速、高血压等症状,不仅导致人们的工作和生活质量下降,而且容易引发安全事故和人际关系矛盾。

目前针对气动噪声的研究主要有理论预测、实验测试与数值模拟三种方法。理论预测虽然可以快速的对气动噪声进行评估,但对于鼓风机由于预测存在大量的假设,并且无法对声源给出细节刻画,无法针对真实结构给出定量的预测,从而受到应用限制;实验测量主要包括流场测量、声源定位和声场测量,虽然可以精确得到产品的噪声等级,但由于鼓风机产品结构复杂程度以及尺寸的增大使得噪声测试环境变得复杂,需要更为昂贵的资金与人力投入。数值方法可以精确刻画声源细节,但由于对网格尺度与数量要求高,使得多尺度问题计算量极大。

并且由于鼓风机机壳的复杂性,声波在不规则的蜗壳内表面会经过多次反射和散射,因此实际的鼓风机内的声场与自由空间中的声场有很大不同,现有常规的气动噪声仿真方法是难以考虑蜗壳的对声场的影响。

因此,对于高压比、高转速、复杂机壳的离心鼓风机,目前还没有形成较为完善的有效的气动噪声仿真预测方法。



技术实现要素:

本发明的目的在于提供一种用于单级离心鼓风机气动噪声的仿真预测方法,以解决现有的气动噪声仿真计算方法无法适用于高速单级离心鼓风机噪声仿真计算的问题。

为了达到上述目的,本发明的技术方案为:一种用于单级离心鼓风机气动噪声的仿真预测方法,包括以下步骤:

s1:根据单级离心鼓风机机组的装配方式,建立满足单级离心鼓风机机组流场计算的模型,并进行模型的网格划分;

s2:进行单级离心鼓风机定常流场仿真计算,定常流场仿真计算收敛后得到有关的气动性能指标;

s3:根据s2中的气动性能指标,进行单级离心鼓风机非定常流场仿真计算,并输出与噪声激励有关的物理量;

s4:建立单级离心鼓风机的气动噪声计算模型;

s5:将s3中与噪声激励有关的物理量做声源转化处理;将转化的等效声源加载到s4中的噪声计算模型中进行噪声计算,得到噪声分析结果;

s6:根据噪声分析结果预测单级离心鼓风机噪声大小以及判断噪声品质,从而制定优化降噪方案。

进一步,在步骤s1中,单级离心鼓风机的叶轮、进出口导叶和蜗壳根据其几何特征线在旋转机械专用软件中进行结构网格划分。

进一步,对所有流体域划分边界层并进行网格加密处理。

进一步,在步骤s2中,气动性能指标包括压比、效率和功率。

进一步,在步骤s3中,与噪声激励有关的物理量包括单级离心鼓风机的主要发声部件表面的非定常压力脉动。

进一步,在步骤s4中,根据单级离心鼓风机机组的装配方式对气动噪声计算模型进行有限元网格划分。

进一步,具体步骤是在所述流场计算的模型的基础上建立单级离心鼓风机的空气声场传播模型,然后对空气声场传播模型进行声学网格填充;蜗壳、扩压器和管道设置全反射边界条件,出口管道处设置openductamlsurface结构,利用自动完美匹配层技术进行无反射全吸声条件处理。

进一步,主要发声部件包括叶轮、扩压器和蜗壳。

进一步,在步骤s5中,对单级离心鼓风机的叶轮表面的非定常压力脉动进行旋转偶极子声源转化,处理为旋转机械特有的扇声源;对单级离心鼓风机的扩压器和蜗壳表面的非定常压力脉动做静止偶极子声源转化,并将扩压器与蜗壳表面输出的非定常压力脉动积分插值映射到声学网格上。

进一步,在步骤s3中,对所述非定常压力脉动进行傅里叶变换处理。

本技术方案的有益效果在于:①对于常规的单级离心鼓风机噪声研究方法,对噪声源的发声原理、噪声特性以及噪声场分布都缺乏具体而直观的分析与研究,基于测试的整改方案导致过多的时间与资金成本投入。本技术方案的研究方法可以通过深入探究单级离心鼓风机噪声源(叶轮、扩压器、蜗壳等)的发声机理,挖掘流场细节与噪声之间的内在关系,形成对噪声机理较为明确的认识,因而可以从设计阶段就考虑降噪优化方案。②由于单级离心鼓风机机壳的复杂性,声波在不规则的蜗壳内表面会经过多次反射和散射,因此实际的单级离心鼓风机内的声场与自由空间中的声场有很大不同,现有常规的气动噪声仿真方法是难以考虑蜗壳的对声场的影响。本技术方案的研究方法通过对蜗壳、扩压器、管道等壁面设置全反射边界条件,并且在出口管道处设置openductamlsurface结构,可以考虑声波在不规则的蜗壳内表面会多次的反射和散射作用,同时利用噪声有限元计算方法中的自动完美匹配层技术,模拟出口管道的真实声辐射状态。

附图说明

图1为本发明一种用于单级离心鼓风机气动噪声的仿真预测方法的流程图。

具体实施方式

下面通过具体实施方式进一步详细说明:

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例基本如附图1所示:一种用于单级离心鼓风机气动噪声的仿真预测方法,包括以下步骤:

s1:根据单级离心鼓风机机组的装配方式,建立满足单级离心鼓风机机组流场计算的模型,并进行模型的网格划分;

s2:进行单级离心鼓风机定常流场仿真计算,定常流场仿真计算收敛后得到有关的气动性能指标,气动性能指标包括压比、效率和功率;

s3:根据s2中的气动性能指标,进行单级离心鼓风机非定常流场仿真计算,并输出与噪声激励有关的物理量,与噪声激励有关的物理量包括单级离心鼓风机的主要发声部件表面的非定常压力脉动,并对非定常压力脉动进行傅里叶变换处理,主要发声部件包括叶轮、扩压器和蜗壳;

s4:建立单级离心鼓风机的气动噪声计算模型,根据单级离心鼓风机机组的装配方式对气动噪声计算模型进行有限元网格划分;具体步骤是在所述流场计算的模型的基础上建立单级离心鼓风机的空气声场传播模型,然后对空气声场传播模型进行声学网格填充;蜗壳、扩压器和管道设置全反射边界条件,出口管道处设置openductamlsurface结构,利用自动完美匹配层技术进行无反射全吸声条件处理;

s5:将s3中与噪声激励有关的物理量做声源转化处理;将转化的等效声源加载到s4中的噪声计算模型中进行噪声计算,得到噪声分析结果;

s6:根据噪声分析结果预测单级离心鼓风机噪声大小以及判断噪声品质,从而制定优化降噪方案。

在步骤s1中,单级离心鼓风机的叶轮、进出口导叶和蜗壳根据其几何特征线在旋转机械专用软件中进行结构网格划分,对所有流体域划分边界层并进行网格加密处理。

在步骤s5中,对单级离心鼓风机的叶轮表面的非定常压力脉动进行旋转偶极子声源转化,处理为旋转机械特有的扇声源;对单级离心鼓风机的扩压器和蜗壳表面的非定常压力脉动做静止偶极子声源转化,并将扩压器与蜗壳表面输出的非定常压力脉动积分插值映射到声学网格上。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。

以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述,所属领域普通技术人员知晓申请日或者优先权日之前发明所属技术领域所有的普通技术知识,能够获知该领域中所有的现有技术,并且具有应用该日期之前常规实验手段的能力,所属领域普通技术人员可以在本申请给出的启示下,结合自身能力完善并实施本方案,一些典型的公知结构或者公知方法不应当成为所属领域普通技术人员实施本申请的障碍。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1