一种利用噪声抖动性质的功率信号滤波方法和系统与流程

文档序号:24124960发布日期:2021-03-02 13:01阅读:92来源:国知局
一种利用噪声抖动性质的功率信号滤波方法和系统与流程

[0001]
本发明涉及电力领域,尤其涉及一种功率信号的滤波方法和系统。


背景技术:

[0002]
随着智能电网的发展,家庭用电负荷的分析变得越来越重要。通过用电负荷的分析,家庭用户可以及时获得每个电器的用电信息,以及电费的精细化清单;电力部门可以获得更详尽的用户用电信息,并可以提高用电负荷预测的准确度,为电力部门提供统筹规划的依据。同时,利用每个电器的用电信息,可获知用户的用电行为,这对于家庭能耗评估和节能策略的研究具有指导意义。
[0003]
当前用电负荷分解主要分为侵入式负荷分解和非侵入式负荷分解两种方法。非侵入式负荷分解方法不需要在负荷的内部用电设备上安装监测设备,只需要根据用电负荷总信息即可获得每个用电设备的负荷信息。非侵入式负荷分解方法具有投入少、方便使用等特点,因此,该方法适用于家庭负荷用电的分解。
[0004]
非侵入式负荷分解算法中,电气设备的开关事件检测是其中最重要的环节。最初的开关事件检测以有功功率p的变化值作为开关事件检测的判断依据,方便且直观。这是因为任何一个用电设备的运行状态发生变化,其所消耗的功率值也必然发生改变,并且该改变也将会在所有电器所消耗的总功率中体现出来。这种方法除了需要设置功率变化值的合理阈值,还需要解决事件检测方法在实际应用中存在的问题,例如某些电器启动时刻的瞬时功率值会出现较大的尖峰(马达启动电流远大于额定电流),会造成电器稳态功率变化值不准确,从而影响对开关事件检测的判断;而且不同家用电器的暂态过程或长或短(脉冲噪声的持续时间和发生频率相差较大),因此功率变化值的确定变得较为困难;由于电能质量的变化(如电压突降)有功功率会出现突变的情况,这样很可能会出现误判。
[0005]
因此,开关事件检测过程中,所使用的实测功率信号常常受到噪声的影响,利用这些不完善的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信号,滤除噪声的影响,是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施解决此问题。


技术实现要素:

[0006]
开关事件检测过程中,所使用的实测功率信号常常受到噪声的影响,利用这些不完善的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信号,滤除噪声的影响,是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施解决此问题。
[0007]
本发明的目的是提供一种利用噪声抖动性质的功率信号滤波方法和系统,所提出的方法利用了功率信号与噪声在发生机制方面的差异,根据噪声抖动性质性质,实现功率信号的滤波。所提出的方法具有较好的鲁棒性,计算也较为简单。
[0008]
为实现上述目的,本发明提供了如下方案:
[0009]
一种利用噪声抖动性质的功率信号滤波方法,包括:
[0010]
步骤101获取按时间顺序采集的信号序列s;
[0011]
步骤102求取噪声抖动尺度因子,具体为:噪声抖动尺度因子记为a,所用求取公式为:
[0012][0013]
其中:
[0014]
snr为所述信号序列s的信噪比;
[0015]
步骤103求取噪声抖动平移因子,具体为:噪声抖动平移因子记为b,所用求取公式为:
[0016][0017]
其中:
[0018]
m0为所述信号序列s的均值,
[0019]
σ为所述信号序列s的均方差;
[0020]
步骤104求取n个噪声抖动因子,具体为:第m个噪声抖动因子记为子ω
m
,所用求取公式为:
[0021][0022]
其中:
[0023]
为抖动函数,所用求取公式为:
[0024][0025]
t为所述信号序列s的采样间隔,
[0026]
m=1,2,
···
,n为因子序号,
[0027]
n为所述信号序列s的长度,
[0028]
s
i
为所述信号序列s的第i个元素,
[0029]
i=1,2,
···
,n为元素序号;
[0030]
步骤105求取滤波阈值,具体为:滤波阈值记为ε0,所用求取公式为:
[0031][0032]
步骤106求取n2个滤波权重,具体为:第i个元素的第m个滤波权重记为所用求取公式为:
[0033][0034]
其中:
[0035]
sgn(s
i
)表示自变量为s
i
的符号函数;
[0036]
步骤107求取滤除噪声后的信号序列,具体为:滤除噪声后的信号序列为s
new
,其第i个元素记为所用求取公式为:
[0037][0038]
其中:
[0039]
s
m
为所述信号序列s的第m个元素。
[0040]
一种利用噪声抖动性质的功率信号滤波系统,包括:
[0041]
模块201获取按时间顺序采集的信号序列s;
[0042]
模块202求取噪声抖动尺度因子,具体为:噪声抖动尺度因子记为a,所用求取公式为:
[0043][0044]
其中:
[0045]
snr为所述信号序列s的信噪比;
[0046]
模块203求取噪声抖动平移因子,具体为:噪声抖动平移因子记为b,所用求取公式为:
[0047][0048]
其中:
[0049]
m0为所述信号序列s的均值,
[0050]
σ为所述信号序列s的均方差;
[0051]
模块204求取n个噪声抖动因子,具体为:第m个噪声抖动因子记为子ω
m
,所用求取公式为:
[0052][0053]
其中:
[0054]
为抖动函数,所用求取公式为:
[0055][0056]
t为所述信号序列s的采样间隔,
[0057]
m=1,2,
···
,n为因子序号,
[0058]
n为所述信号序列s的长度,
[0059]
s
i
为所述信号序列s的第i个元素,
[0060]
i=1,2,
···
,n为元素序号;
[0061]
模块205求取滤波阈值,具体为:滤波阈值记为ε0,所用求取公式为:
[0062][0063]
模块206求取n2个滤波权重,具体为:第i个元素的第m个滤波权重记为所用求取公式为:
[0064][0065]
其中:
[0066]
sgn(s
i
)表示自变量为s
i
的符号函数;
[0067]
模块207求取滤除噪声后的信号序列,具体为:滤除噪声后的信号序列为s
new
,其第i个元素记为所用求取公式为:
[0068][0069]
其中:
[0070]
s
m
为所述信号序列s的第m个元素。
[0071]
根据本发明提供的具体实施例,本发明公开了以下技术效果:
[0072]
开关事件检测过程中,所使用的实测功率信号常常受到噪声的影响,利用这些不完善的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信号,滤除噪声的影响,是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施解决此问题。
[0073]
本发明的目的是提供一种利用噪声抖动性质的功率信号滤波方法和系统,所提出的方法利用了功率信号与噪声在发生机制方面的差异,根据噪声抖动性质性质,实现功率信号的滤波。所提出的方法具有较好的鲁棒性,计算也较为简单。
附图说明
[0074]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0075]
图1为本发明的方法流程示意图;
[0076]
图2为本发明的系统流程示意图;
[0077]
图3为本发明的具体实施案例流程示意图。
具体实施方式
[0078]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0079]
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0080]
图1一种利用噪声抖动性质的功率信号滤波方法的流程示意图
[0081]
图1为本发明一种利用噪声抖动性质的功率信号滤波方法的流程示意图。如图1所示,所述的一种利用噪声抖动性质的功率信号滤波方法具体包括以下步骤:
[0082]
步骤101获取按时间顺序采集的信号序列s;
[0083]
步骤102求取噪声抖动尺度因子,具体为:噪声抖动尺度因子记为a,所用求取公式为:
[0084][0085]
其中:
[0086]
snr为所述信号序列s的信噪比;
[0087]
步骤103求取噪声抖动平移因子,具体为:噪声抖动平移因子记为b,所用求取公式为:
[0088][0089]
其中:
[0090]
m0为所述信号序列s的均值,
[0091]
σ为所述信号序列s的均方差;
[0092]
步骤104求取n个噪声抖动因子,具体为:第m个噪声抖动因子记为子ω
m
,所用求取公式为:
[0093][0094]
其中:
[0095]
为抖动函数,所用求取公式为:
[0096][0097]
t为所述信号序列s的采样间隔,
[0098]
m=1,2,
···
,n为因子序号,
[0099]
n为所述信号序列s的长度,
[0100]
s
i
为所述信号序列s的第i个元素,
[0101]
i=1,2,
···
,n为元素序号;
[0102]
步骤105求取滤波阈值,具体为:滤波阈值记为ε0,所用求取公式为:
[0103][0104]
步骤106求取n2个滤波权重,具体为:第i个元素的第m个滤波权重记为所用求取公式为:
[0105][0106]
其中:
[0107]
sgn(s
i
)表示自变量为s
i
的符号函数;
[0108]
步骤107求取滤除噪声后的信号序列,具体为:滤除噪声后的信号序列为s
new
,其第i个元素记为所用求取公式为:
[0109][0110]
其中:
[0111]
s
m
为所述信号序列s的第m个元素。
[0112]
图2一种利用噪声抖动性质的功率信号滤波系统的结构意图
[0113]
图2为本发明一种利用噪声抖动性质的功率信号滤波系统的结构示意图。如图2所示,所述一种利用噪声抖动性质的功率信号滤波系统包括以下结构:
[0114]
模块201获取按时间顺序采集的信号序列s;
[0115]
模块202求取噪声抖动尺度因子,具体为:噪声抖动尺度因子记为a,所用求取公式为:
[0116]
[0117]
其中:
[0118]
snr为所述信号序列s的信噪比;
[0119]
模块203求取噪声抖动平移因子,具体为:噪声抖动平移因子记为b,所用求取公式为:
[0120][0121]
其中:
[0122]
m0为所述信号序列s的均值,
[0123]
σ为所述信号序列s的均方差;
[0124]
模块204求取n个噪声抖动因子,具体为:第m个噪声抖动因子记为子ω
m
,所用求取公式为:
[0125][0126]
其中:
[0127]
为抖动函数,所用求取公式为:
[0128][0129]
t为所述信号序列s的采样间隔,
[0130]
m=1,2,
···
,n为因子序号,
[0131]
n为所述信号序列s的长度,
[0132]
s
i
为所述信号序列s的第i个元素,
[0133]
i=1,2,
···
,n为元素序号;
[0134]
模块205求取滤波阈值,具体为:滤波阈值记为ε0,所用求取公式为:
[0135][0136]
模块206求取n2个滤波权重,具体为:第i个元素的第m个滤波权重记为所用求取公式为:
[0137][0138]
其中:
[0139]
sgn(s
i
)表示自变量为s
i
的符号函数;
[0140]
模块207求取滤除噪声后的信号序列,具体为:滤除噪声后的信号序列为s
new
,其第i个元素记为所用求取公式为:
[0141][0142]
其中:
[0143]
s
m
为所述信号序列s的第m个元素。
[0144]
下面提供一个具体实施案例,进一步说明本发明的方案
[0145]
图3为本发明具体实施案例的流程示意图。如图3所示,具体包括以下步骤:
[0146]
步骤301获取按时间顺序采集的信号序列s;
[0147]
步骤302求取噪声抖动尺度因子,具体为:噪声抖动尺度因子记为a,所用求取公式为:
[0148][0149]
其中:
[0150]
snr为所述信号序列s的信噪比;
[0151]
步骤303求取噪声抖动平移因子,具体为:噪声抖动平移因子记为b,所用求取公式为:
[0152][0153]
其中:
[0154]
m0为所述信号序列s的均值,
[0155]
σ为所述信号序列s的均方差;
[0156]
步骤304求取n个噪声抖动因子,具体为:第m个噪声抖动因子记为子ω
m
,所用求取公式为:
[0157][0158]
其中:
[0159]
为抖动函数,所用求取公式为:
[0160][0161]
t为所述信号序列s的采样间隔,
[0162]
m=1,2,
···
,n为因子序号,
[0163]
n为所述信号序列s的长度,
[0164]
s
i
为所述信号序列s的第i个元素,
[0165]
i=1,2,
···
,n为元素序号;
[0166]
步骤305求取滤波阈值,具体为:滤波阈值记为ε0,所用求取公式为:
[0167][0168]
步骤306求取n2个滤波权重,具体为:第i个元素的第m个滤波权重记为所用求取公式为:
[0169][0170]
其中:
[0171]
sgn(s
i
)表示自变量为s
i
的符号函数;
[0172]
步骤307求取滤除噪声后的信号序列,具体为:滤除噪声后的信号序列为s
new
,其第i个元素记为所用求取公式为:
[0173][0174]
其中:
[0175]
s
m
为所述信号序列s的第m个元素。
[0176]
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述较为简单,相关之处参见方法部分说明即可。
[0177]
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1