[0001]
本申请涉及图像识别技术领域,具体而言,涉及一种高空抛物检测方法、装置、计算机设备及存储介质。
背景技术:[0002]
近年来高空抛物、坠物事件时有发生,高空抛物是一种不文明的行为,在污染环境的同时也严重危害居民的公共安全、扰乱社会安宁,一旦发生高空抛物伤人事件时,很难从众多住户中定位肇事者的具体位置从而追究责任,且无法及时提醒地面上的行人注意躲避,导致高空抛物安全事故频发。因此,若能准确及时定位高空抛物楼层,并及时预警与拦截,能极大保护人民的生命及财产安全,一直是社会所关注且亟待解决的问题。
[0003]
相关技术中出现了基于计算机视觉的高空抛物检测方法,具体地,中国专利(cn111476973a)提供了一种利用红外感应系统进行高空抛物检测,但红外感应系统价格昂贵,实施不易;中国专利(cn205982657u)提供了一种基于超声波反射检测的高空抛物报警方法,但系统造价昂贵,部署不易,且易受周边环境干扰,精准度不够。此外,在实际情况中,存在单路摄像头无法监控整个楼体、自然物体的运动复杂多变受到风力、气候、空气阻力影响、非抛物的自然物体持续干扰等问题,出现较高的误检率和漏检率,也即,在监控画面复杂且存在自然物体持续来回运动时,相关技术中的高空抛物检测算法不能达到理想效果。
技术实现要素:[0004]
为解决上述技术问题,本发明提出一种高空抛物检测方法,包括以下步骤:设置视频监控区域,实时采集目标视频图像;采用背景建模算法检测出目标视频图像内所有移动物体;采用卡尔曼滤波的方式对检测出的移动物体进行跟踪,获取所述移动物体轨迹特点及相关参数,包括轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状及像素大小变化;基于规则的高空抛物识别,判断识别是否为高空抛物;采用长短期记忆网络(lstm)分类模型进行分类,将轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状、像素大小变化等参数作为特征数据输入到lstm中获取分类结果,判断是否为误报;若经所述长短期记忆网络(lstm)分类模型分类结果为非误报,推送报警信息至监控中心。
[0005]
优选地,所述基于规则的高空抛物识别,采用设定建筑外轮廓线及特殊位置线,一旦出现运动物体轨迹由内而外穿过轮廓线,或从上至下穿越特殊位置线,即可认为发生高空抛物。
[0006]
优选地,所述背景建模算法为单高斯模型的方法,或混合高斯模型的方法,实现对所述移动物体的检测。
[0007]
本申请实施例还提供了一种高空抛物检测装置,包括:摄像模块,用于实时采集目标视频图像;检测模块,用于采用背景建模算法检测目标视频图像内所有移动物体;跟踪模块,用于采用卡尔曼滤波的方式对检测出的所述移动物体进行跟踪,获取所述移动物体轨迹特点及相关参数,包括轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状及像素大小变化;识别模块,用于基于规则的高空抛物识别,判断识别所述移动物体是否为高空抛物;过滤模块,用于采用长短期记忆网络(lstm)分类模型进行分类,将轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状、像素大小变化等参数作为特征数据输入到lstm中获取分类结果,判断是否为误报;报警模块,用于推送报警信息至监控中心。
[0008]
本申请实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,执行如上面描述的方法。
[0009]
本申请实施例还提供了一种存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器运行时执行如上面描述的方法。
[0010]
通过上述技术方案,本发明的有益效果是:本申请所采用的高空抛物检测方法,首先找出待判断的移动物体的轨迹;再对所有轨迹进行分析与过滤,找出符合该场景下高空抛物的轨迹;然后对发生高空抛物发生地点发出警报;最后,通过过滤掉偶然出现的误检、漏检情况,从而减少误报。本申请所应用的方法,实时性高,漏检率低,既可以远程实时调度现场监控,又可以获取报警图片和报警事件发生的准确位置。
附图说明
[0011]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0012]
图1为本申请实施例提供的高空抛物检测方法的流程示意图;图2为本申请实施例提供的长短期记忆网络(lstm)分类模型分类流程示意图;图3为本申请实施例提供的高空抛物检测装置的结构示意图;图4为本申请实施例提供的计算机设备的结构示意图。
具体实施方式
[0013]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
[0014]
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相
关的所列项目的任意的和所有的组合。
[0015]
请参见图1本申请实施例提供的高空抛物检测方法的流程示意图;一种高空抛物检测方法包括以下步骤:步骤s110:设置视频监控区域,实时采集目标视频图像;步骤s120:采用背景建模算法检测目标视频图像内所有移动物体;具体地,本实施例可采用单高斯模型方法、混合高斯模型方法或光流法实现对移动物体的检测。
[0016]
单高斯模型方法针对多个视频帧中固定的像素点,计算n帧视频图像中该点的像素值的n个样本的均值和方差,用均值和方差即可唯一确定单高斯背景模型,背景相减后的值与阈值(取三倍的方差)比较,即可判断前景或背景,确定是否出现移动物体。
[0017]
混合高斯模型依次提取n帧视频图像,每次对每个像素点迭代建模。将当前画面与假设是静态背景进行比较发现有明显的变化的区域,就可以认为该区域出现移动的物体。
[0018]
光流法检测运动目标,根据视频帧中各像素点的速度矢量特征对图像进行动态的分析。若图像中不存在运动目标,那么光流矢量在整个图像区域则是连续变化的,而当物体和图像背景中存在相对运动时,运动物体所形成的速度矢量则必然不同于邻域背景的速度矢量,从而将运动物体的位置检测出来。由于光流法要进行迭代运算,精度越高计算量就越大。
[0019]
关于单高斯模型方法、混合高斯模型方法或光流法检测运动目标为现有技术,本实施例不再赘述。
[0020]
步骤s130:采用卡尔曼滤波的方式对检测出的移动物体进行跟踪,获取移动物体轨迹特点及相关参数,包括轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状及像素大小变化;本申请采用卡尔曼滤波算法实现对移动目标进行准确跟踪,得到多帧的物体运动轨迹。
[0021]
步骤s140:基于规则的高空抛物识别,判断识别是否为高空抛物;具体地,基于规则的高空抛物识别,采用设定建筑外轮廓线及特殊位置线,一旦出现运动物体轨迹由内而外穿过轮廓线,或从上至下穿越特殊位置线,即可认为发生高空抛物;步骤s150:采用长短期记忆网络(lstm)分类模型进行分类,将轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状、像素大小变化等参数作为特征数据输入到lstm中获取分类结果,判断是否为误报;在深度学习中,lstm是一种特殊类型的rnn,用来解决rnn不能长期依赖的问题。请参见图2本申请实施例提供的长短期记忆网络(lstm)分类模型分类流程示意图,本实施例通过卡尔曼滤波算法获取的轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状及像素大小变化,将上述数据作为最能代表运动物体内容的特征数据,将特征数据输入到lstm网络模型中进行训练学习,最后输出分类结果,判断所述物体是否为高空抛物。
[0022]
lstm网络模型的输入层是提取的特征数据轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状及像素大小变化,第一个lstm隐藏层的神经元个数为128,第二个lstm隐藏层的神经元个数为32,最后输出层是1个神经元,代表高空抛物的概率。
[0023]
通过测试可知,当使用轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体
形状及像素大小变化五种特征数据作为输入数据时,模型的泛化效果较好,分类的准确率较高,实现了高空抛物的判断。
[0024]
步骤s160:若经长短期记忆网络(lstm)分类模型分类结果为非误报,推送报警信息至监控中心请参见图3示出的本申请实施例提供的高空抛物检测装置的结构示意图;本申请实施例提供了一种高空抛物检测装置300,包括:摄像模块310,用于实时采集目标视频图像;检测模块320,用于采用背景建模算法检测目标视频图像内所有移动物体;跟踪模块330,用于采用卡尔曼滤波的方式对检测出的所述移动物体进行跟踪,获取所述移动物体轨迹特点及相关参数,包括轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状及像素大小变化;识别模块340,用于基于规则的高空抛物识别,判断识别所述移动物体是否为高空抛物;过滤模块350,用于采用长短期记忆网络(lstm)分类模型进行分类,将轨迹曲线趋势、物体移动加速度、物体前后帧交并比、物体形状、像素大小变化等参数作为特征数据输入到lstm中获取分类结果,判断是否为误报;报警模块360,用于推送报警信息至监控中心。
[0025]
应理解的是,该装置与上述的高空抛物检测方法实施例对应,能够执行上述方法实施例涉及的各个步骤,该装置具体的功能可以参见上文中的描述,为避免重复,此处适当省略详细描述。该装置包括至少一个能以软件或固件(firmware)的形式存储于存储器中或固化在装置的操作系统(operating system,os)中的软件功能模块。
[0026]
请参见图4示出的本申请实施例提供的计算机设备的结构示意图。本申请实施例提供的一种计算机设备400,包括:处理器410和存储器420,存储器420存储有处理器410可执行的计算机程序,计算机程序被处理器410执行时执行如上的方法。
[0027]
本申请实施例还提供了一种存储介质430,该存储介质430上存储有计算机程序,该计算机程序被处理器410运行时执行如上的方法。
[0028]
其中,存储介质430可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(static random access memory,简称sram),电可擦除可编程只读存储器(electrically erasable programmable read-only memory,简称eeprom),可擦除可编程只读存储器(erasable programmable read only memory,简称eprom),可编程只读存储器(programmable red-only memory,简称prom),只读存储器(read-only memory,简称rom),磁存储器,快闪存储器,磁盘或光盘。
[0029]
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
[0030]
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内
部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
[0031]
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
[0032]
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
[0033]
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
[0034]
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(ram),只读存储器(rom),可擦除可编辑只读存储器(eprom或闪速存储器),光纤装置,以及便携式光盘只读存储器(cdrom)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
[0035]
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(pga),现场可编程门阵列(fpga)等。
[0036]
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介
质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
[0037]
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
[0038]
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。