一种基于时域短时及长时特征融合的脉纹识别方法

文档序号:25859491发布日期:2021-07-13 16:14阅读:82来源:国知局
一种基于时域短时及长时特征融合的脉纹识别方法
本发明涉及人工智能机器学习
技术领域
,具体涉及一种基于时域短时及长时特征融合的脉纹识别方法。
背景技术
:随着信息化服务和数字化系统的爆炸性增长,密码管理在现实生活中变得越来越困难。近年来,科学家利用生物识别技术来建模人的个性化特征,从而利用人的独一无二性代替密码。然而,常见的生物识别技术,包括指纹、虹膜、手的几何形状和人脸等生物信息容易被攻击,且大多生物识别技术需要昂贵的采集和活体检测,提取成本较高。而新型的光电容积脉搏波(ppg)和心电图是目前进行心血管诊断所使用的非侵入性技术,在近年来作为生物识别技术的数据来源被广泛研究利用。ppg是一种简单、低成本的光学技术,通过测量皮肤表面来检测血管中的血量变化。如今,ppg传感器已被应用于许多不同的可穿戴设备中。与心电图不同的是,ppg传感器的信号采集只需要在身体的一侧完成,易用性和实用性更强。目前脉纹信息的提取大多基于单维时域特征或者是频域特征。单维时域特征提取分为两种,一种是将脉搏波信号的整体作为输入,另一种是将信号按照周期切分后输入。前者容易造成模型的复杂度高,参数量大,而且需要处理不同脉搏波信号起点不对齐的情况,而后者信号在切分后容易使模型过分关注周期内部的特征提取,而忽略了不同周期间的关系。技术实现要素:本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于时域短时及长时特征融合的脉纹识别方法。本发明的目的可以通过采取如下技术方案达到:一种基于时域短时及长时特征融合的脉纹识别方法,所述脉纹识别方法包括以下步骤:s1、自建脉搏波数据库,通过小波去噪、平滑滤波以及数据归一化对脉搏波数据库中存储的脉搏波信号进行预处理,接着通过多维脉纹信息提取策略获得短时特征、长时特征和起点规整后的单周期脉搏波信号,其中短时特征包括主波包络、次波包络、主次波包络,长时特征是呼吸周期对应的多周期长时特征;s2、构建双路分支神经网络,其中,双路分支神经网络包括短时信号处理分支和长时信号处理分支,构建卷积层加非线性激活函数的短时信号处理分支,将短时特征输入短时信号处理分支;构建卷积-循环结构的长时信号处理分支,将长时特征以及起点规整后的单周期脉搏波信号输入长时信号处理分支;s3、将步骤s2中双路分支神经网络输出结果进行特征融合,得到脉纹识别结果。进一步地,所述脉搏波数据库的建立过程如下:通过脉搏血氧仪,在实验室条件下,在不同用户的手腕和手指处进行数据的采集,从而获得不同用户的脉搏波信号。进一步地,所述步骤s1中脉搏波信号进行预处理的过程如下:通过小波去噪和平滑滤波来滤除脉搏波信号中的高频噪声,保留低频部分;之后去除基线漂移,以及进行数据归一化,得到处理后的脉搏波信号。进一步地,所述步骤s1中短时特征和长时特征的特征提取过程如下:连接所有脉搏波信号的主波峰值,并使用三次样条内插的方式进行数据增强,得到主波包络;连接所有脉搏波信号的次波峰值,并使用三次样条内插的方式进行数据增强,得到次波包络;连接所有脉搏波信号的每一组的主-次波峰值,并使用三次样条内插的方式进行数据增强,得到主次波包络;上述对于短时特征的提取可以丰富特征内容,弥补切分脉搏波信号后趋势类信息的缺失,实验表明,此类辅助性特征可以提高单周期脉搏波信号的识别准确率。将脉搏波信号周期内点数增加时段的信号为吸气时的信号,将周期内点数降低时段的信号为呼气时的信号,将脉搏波信号每一次连续周期内点数先增后减的序列作为多周期长时特征。通过求极大值,获得主波的序列,接着将每两个主波之间的时段视为一个周期,使用线性内插方法进行数据增强,内插后每个周期具有相同的起点以及相同的点数的信号即为起点规整后的单周期脉搏波信号。进一步地,所述短时信号处理分支的网络结构为依次顺序连接的输入层、一维卷积神经网络层、非线性层;其中,所述非线性层使用relu函数。进一步地,所述长时信号处理分支采用卷积-循环神经网络,所述长时信号处理分支的网络结构为依次顺序连接的输入层,二维卷积神经网络层、循环神经网络层、非线性层,其中,所述非线性层使用relu函数。与常用一维卷积神经网络进行脉搏波信号的特征提取相比,使用二维卷积神经网络可以提取脉搏波信号内部时不变特征,实验表明,用二维卷积神经网络替代一维卷积神经网络,模型的效果取得了较大的提升。进一步地,所述步骤s3中特征融合的过程如下:将双路分支神经网络中短时信号处理分支和长时信号处理分支的输出进行串接,送入全连接神经网络中,所述全连接神经网络的网络结构为依次顺序连接的输入层、全连接层、非线性层1、全连接层、非线性层2、全连接层、非线性层3;其中,所述非线性层1和非线性层2使用relu函数,非线性层3使用sigmoid函数;将全连接神经网络最后一层的输出作为得到样本i的预测值pi,当pi大于等于0.5时,认为样本i的两个脉纹信息属于同一人,当pi小于0.5时,认为样本i的两个脉纹信息不属于同一人。进一步地,所述双路分支神经网络利用交叉熵损失函数l进行训练,具体如下:其中yi表示第i个样本的真实值,pi表示第i个样本的预测值,n为样本数量。进一步地,所述短时信号处理分支中一维卷积神经网络层的实现如下:其中,表示第k个短时特征经过卷积后第n个通道的输出,s_cin表示短时特征的输入维度,表示输出的第n个通道中第k个短时特征对应的参数,s_ink表示第k个短时特征的输入。进一步地,所述长时信号处理分支中二维卷积神经网络层的实现如下:其中,表示第k个长时特征经过卷积后第n个通道的输出,表示第k个长时特征的输入维度,表示输出的第n个通道中第k个长时特征对应的参数,l_ink表示第k个长时特征的输入;所述长时信号处理分支中循环神经网络层的实现如下:it=σ(wixt+uiht-1)(4)ft=σ(wfxt+ufht-1)(5)ot=σ(woxt+uoht-1)(6)其中函数表示it、ft、ot分别为第t个时刻的输入门、遗忘门以及输出门,xt表示第t个时刻的输入,ht-1表示第t-1个时刻的隐藏门输出,表示第t个时刻的候选记忆单元,ct表示第t个时刻的记忆单元,表示点乘,其中w和u是可训练的矩阵,wi,wf,wo,wc分别表示在输入门,遗忘门,输出门以及记忆单元中,输入xt所对应的参数矩阵,ui、uf、uo、uc分别表示在输入门、遗忘门、输出门以及记忆单元中,隐藏门输出ht-1所对应的参数矩阵。本发明相对于现有技术具有如下的优点及效果:(1)相比于人工提取特征,本发明可以自动化地从序列中提取特征。(2)本发明使用多维特征,同时兼顾周期内特征和周期外的趋势特征,互补的特征组成能够提供更加全面的信息线索,效果更优越,鲁棒性更强。(3)本发明同时着重于序列间及序列内对齐的问题,这使得本发明在效果和参数量的权衡下取得了较好的效果。附图说明图1是本发明实施例中公开的一种基于时域短时及长时特征融合的脉纹识别方法的流程图;图2是本发明实施例中短时信号处理分支的流程图;图3是本发明实施例中长时信号处理分支的流程图。具体实施方式为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例本实施例公开了一种基于时域短时及长时特征融合的脉纹识别方法,如图1所示,具体步骤如下:s1、自建脉搏波数据库,通过小波去噪、平滑滤波以及数据归一化对脉搏波数据库中存储的脉搏波信号进行预处理,接着通过多维脉纹信息提取策略获得短时特征、长时特征和起点规整后的单周期脉搏波信号,其中短时特征包括主波包络、次波包络、主次波包络,长时特征是呼吸周期对应的多周期长时特征;其中,脉搏波数据库的建立过程如下:通过脉搏血氧仪,在实验室的环境中,在不同用户的手腕和手指处进行数据的采集,从而获得不同用户的脉搏波信号。每一组脉搏波信号采样的频率是500hz,每一次共采集了10221个点。连续测试一个月,共采集了37个人的信号,最终过滤得到85002条有效数据,每条数据包含10221个点,约为22个周期脉搏波信号。其中,上述步骤s1中脉搏波信号进行预处理的过程如下:通过小波去噪和平滑滤波来滤除脉搏波信号中的高频噪声,保留低频部分;之后去除基线漂移,以及进行数据归一化,得到处理后的脉搏波信号。其中,上述步骤s1中短时特征和长时特征的特征提取过程如下:连接所有脉搏波信号的主波峰值,并使用三次样条内插的方式进行数据增强,将主波包络延长至100个点,得到主波包络;连接所有脉搏波信号的次波峰值,并使用三次样条内插的方式进行数据增强,将次波包络延长至100个点,得到次波包络;连接所有脉搏波信号的每一组的主-次波峰值,并使用三次样条内插的方式进行数据增强,将主次波包络延长至100个点,得到主次波包络;将脉搏波信号周期内点数增加时段的信号为吸气时的信号,将周期内点数降低时段的信号为呼气时的信号,将脉搏波信号每一次连续周期内点数先增后减的序列作为多周期长时特征。利用线性内插作为数据增强的方式,将序列延长到2500个点。为了在硬件端利用矩阵并行化加速,对不足多周期长时特征的最大长度的序列进行补零;通过求极大值,获得主波的序列,接着将每两个主波之间的时段视为一个周期,使用线性内插方法进行数据增强,将序列延长到500个点。内插后每个周期具有相同的起点以及相同的点数的信号即为起点规整后的单周期脉搏波信号。为了在硬件端利用矩阵并行化加速,对不足起点规整后的单周期脉搏波信号最大长度的序列进行补零。将起点规整后的单周期脉搏波信号切分成n*500的矩阵,其中n代表延拓后的起点规整后的单周期脉搏波信号包含的周期数。s2、构建双路分支神经网络,其中,双路分支神经网络包括短时信号处理分支和长时信号处理分支,构建卷积层加非线性激活函数的短时信号处理分支,将短时特征输入短时信号处理分支;构建卷积-循环结构的长时信号处理分支,将长时特征以及起点规整后的单周期脉搏波信号输入长时信号处理分支;s3、将步骤s2中双路分支神经网络输出结果进行特征融合,得到脉纹识别结果。其中,上述步骤s3中特征融合的过程如下:将双路分支神经网络得到的输出进行串接,送入全连接神经网络中,所述全连接神经网络的网络结构为依次顺序连接的输入层、全连接层、非线性层1、全连接层、非线性层2、全连接层、非线性层3;其中,所述非线性层1和非线性层2使用relu函数,非线性层3使用sigmoid函数;将全连接神经网络最后一层的输出作为样本i的预测值pi,当pi大于等于0.5时,认为样本i的两个脉纹信息属于同一人,当pi小于0.5时,认为样本i的两个脉纹信息不属于同一人。双路分支神经网络利用交叉熵损失函数l进行训练,具体如下:其中yi表示第i个样本的真实值,pi表示第i个样本的预测值,n为样本数量。上述步骤s2中所述双路分支神经网络指的是短时信号处理分支以及长时信号处理分支。短时信号处理分支训练的具体流程如图2所示,构建短时信号处理分支具体层数如表1所示,短时信号处理分支构建方法为将短时特征,包括主波包络,次波包络,主次波包络,输入短时信号处理分支;其中所述短时信号处理分支的网络结构为依次顺序连接的输入层、一维卷积神经网络层、非线性层;其中,所述非线性层使用relu函数。短时信号处理分支中一维卷积神经网络层的实现如下:其中,表示第k个短时特征经过卷积后第n个通道的输出,s_cin表示短时特征的输入维度,表示输出的第n个通道中第k个短时特征对应的参数,s_ink表示第k个短时特征的输入。表1.各层参数表长时信号处理分支训练的具体流程如图3所示,构建长时信号处理分支如表2所示,长时信号处理分支构建方法为将多周期长时特征以及起点规整后的单周期脉搏波信号,输入长时信号处理分支;所述长时信号处理分支采用卷积-循环神经网络,其网络结构为依次顺序连接的输入层,二维卷积神经网络层、循环神经网络层、非线性层,其中,所述非线性层使用relu函数。长时信号处理分支中二维卷积神经网络层的实现如下:其中表示第k个长时特征经过卷积后第n个通道的输出,表示第k个长时特征的输入维度,表示输出的第n个通道中第k个长时特征对应的参数,l_ink表示第k个长时特征的输入。长时信号处理分支中循环神经网络层的实现如下:it=σ(wixt+uiht-1)(4)ft=σ(wfxt+ufht-1)(5)ot=σ(woxt+uoht-1)(6)其中表示it、ft、ot分别为第t个时刻的输入门、遗忘门以及输出门,xt表示第t个时刻的输入,ht-1表示第t-1个时刻的隐藏门输出,表示第t个时刻的候选记忆单元,ct表示第t个时刻的记忆单元,表示点乘,其中w和u是可训练的矩阵,wi,wf,wo,wc分别表示在输入门,遗忘门,输出门以及记忆单元中,输入xt所对应的参数矩阵,ui,uf,uo,uc分别表示在输入门,遗忘门,输出门以及记忆单元中,隐藏门输出ht-1所对应的参数矩阵。表2.n表示输入信号的周期数表上述步骤s3中所述全连接神经网络具体层数如表3所示。表3.m表示长时信号分支和短时信号分支输出串接维度表网络层具体操作特征尺寸输入层无1*m全连接层权重矩阵为m*2561*256非线性层1relu函数1*256全连接层权重矩阵为256*1281*128非线性层2relu函数1*128全连接层权重矩阵为128*11*1非线性层3sigmoid函数1输出层无1上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1