一种数据分析方法、装置、设备及存储介质与流程

文档序号:25857604发布日期:2021-07-13 16:11阅读:108来源:国知局
一种数据分析方法、装置、设备及存储介质与流程

本发明涉及大数据领域,尤其涉及一种数据分析方法、装置、设备及存储介质。



背景技术:

数字化转型对任何一家业务公司都是至关重要的,但长期以来无法解决的问题就是:业务公司的营收主要依赖业务代理人的线下业务经营活动,但这些线下业务经营活动的数据无法被结构化精准获取,从而导致公司层面只能要求结果却无法了解、优化过程。这种局面极大的限制了业务代理人群体业务经营行为的升级,以及公司的数字化转型和经营模式升级。因此,如何有效地获取线下业务经营活动的数据成为关键点。



技术实现要素:

本发明实施例提供了一种数据分析方法、装置、设备及存储介质,可以准确、有效地获取线下业务经营活动的数据,量化统计业务代理人线下业务经营活动的数据,有助于提升对客户信息的管理效率。

第一方面,本发明实施例提供了一种数据分析方法,所述方法包括:

获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息;

对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息;

根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中;

根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。

进一步地,所述对所述语音信息进行识别,得到与所述语音信息对应的文本信息之前,还包括:

获取样本语音信息的语音信号序列,并对所述样本语音信号序列进行分类和标注;

将所述分类和标注后的样本语音信号序列输入预设的循环神经网络模型进行训练,得到联合识别模型。

进一步地,所述对所述语音信息进行识别,得到与所述语音信息对应的文本信息,包括:

获取所述语音信息的语音信号序列,并在所述语音信号序列的指定位置处添加指定标识符,所述指定标识符用于指示业务活动类型;

将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述业务代理人的业务活动信息。

进一步地,所述将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述业务代理人的业务活动信息,包括:

将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述语音信号序列中每个字符对应的标签,其中,所述标签包括前缀和后缀,所述前缀用于标识所述标签的位置,所述后缀用于标识所述标签的类型;

根据所述语音信号序列中每个字符对应的标签和所述指定标识符确定所述业务代理人的业务活动信息。

进一步地,所述业务活动信息包括业务活动类型和业务活动元素;所述根据所述语音信号序列中每个字符对应的标签和所述指定标识符确定所述业务代理人的业务活动信息,包括:

根据所述语音信号序列中每个字符对应的标签确定所述业务代理人的业务活动元素;

根据所述语音信号序列的指定位置处添加的指定标识符确定所述业务代理人的业务活动元素。

进一步地,所述根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,包括:

根据预设的统计时间点从所述业务日志中获取在预设时间范围内所述业务代理人发生业务活动的结构化关键信息;

所述将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息,包括:

将在所述预设时间范围内所述业务代理人发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内所述业务代理人的业务活动量信息。

进一步地,所述根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,包括:

获取所述业务代理人的团队标识,并根据预设的统计时间点从所述业务日志中获取在预设时间范围内与所述团队标识对应的所有业务代理人发生业务活动的结构化关键信息;

所述将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息,包括:

将在所述预设时间范围内与所述团队标识对应的所有业务代理人发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内所述业务代理人的业务活动量信息。

第二方面,本发明实施例提供了一种数据分析装置,包括:

获取单元,用于获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息;

识别单元,用于对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息;

确定单元,用于根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中;

统计单元,用于根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。

第三方面,本发明实施例提供了一种计算机设备,包括处理器、输入设备、输出设备和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储支持数据分析装置执行上述方法的计算机程序,所述计算机程序包括程序,所述处理器被配置用于调用所述程序,执行上述第一方面的方法。

第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行以实现上述第一方面的方法。

本发明实施例可以获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息;对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息;根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中;根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。通过这种实施方式,可以准确、有效地获取线下业务经营活动的数据,量化统计业务代理人线下业务经营活动的数据,有助于提升对客户信息的管理效率。

附图说明

为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明实施例提供的一种数据分析方法的示意流程图;

图2是本发明实施例提供的一种语音信号序列的示意图;

图3是本发明实施例提供的一种业务活动量的示意图;

图4是本发明实施例提供的另一种业务活动量的示意图;

图5是本发明实施例提供的一种数据分析装置的示意框图;

图6是本发明实施例提供的一种计算机设备的示意框图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明实施例提供的数据分析方法可以应用于一种数据分析装置,在某些实施例中,所述数据分析装置设置于计算机设备中。在某些实施例中,所述计算机设备包括但不限于智能手机、平板电脑、膝上型电脑等中的一种或者多种。

下面结合附图1对本发明实施例提供的数据分析方法进行示意性说明。

请参见图1,图1是本发明实施例提供的一种数据分析方法的示意流程图,如图1所示,该方法可以由数据分析装置执行,所述数据分析装置设置于计算机设备中。具体地,本发明实施例的所述方法包括如下步骤。

s101:获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息。

本发明实施例中,数据分析装置可以获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息。

在一个实施例中,数据分析装置在获取业务代理人输入的语音信息时,可以获取业务代理人通过对话机器人等录入的语音信息。在某些实施例中,所述语音信息可以是代理人录入的自己已经完成的业务经营活动的内容;在其他实施例中,所述语音信息还可以是代理人记录的自己在一次线下与客户接触过程中收获的有价值的客户信息,如客户的家庭情况、个人意愿等。

s102:对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息。

本发明实施例中,数据分析装置可以对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息。

在某些实施例中,所述业务活动经营信息可以包括但不限于业务活动名称、业务活动时间、业务活动地点等中的一种或多种。在某些实施例中,所述客户信息可以包括但不限于客户姓名、电话号码、身份证号码、家庭情况、个人意愿等任意一种或多种。

在一个实施例中,数据分析装置在对所述语音信息进行识别,得到与所述语音信息对应的文本信息之前,可以获取样本语音信息的语音信号序列,并对所述样本语音信号序列进行分类和标注;将所述分类和标注后的样本语音信号序列输入预设的循环神经网络模型进行训练,得到联合识别模型。

在一个实施例中,数据分析装置在对所述语音信息进行识别,得到与所述语音信息对应的文本信息时,可以获取所述语音信息的语音信号序列,并在所述语音信号序列的指定位置处添加指定标识符,所述指定标识符用于指示业务活动类型;将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述业务代理人的业务活动信息。

在一个实施例中,数据分析装置在将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述业务代理人的业务活动信息时,可以将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述语音信号序列中每个字符对应的标签,其中,所述标签包括前缀和后缀,所述前缀用于标识所述标签的位置,所述后缀用于标识所述标签的类型;根据所述语音信号序列中每个字符对应的标签和所述指定标识符确定所述业务代理人的业务活动信息。

在一个实施例中,所述业务活动信息包括业务活动类型和业务活动元素;数据分析装置在根据所述语音信号序列中每个字符对应的标签和所述指定标识符确定所述业务代理人的业务活动信息时,可以根据所述语音信号序列中每个字符对应的标签确定所述业务代理人的业务活动元素;根据所述语音信号序列的指定位置处添加的指定标识符确定所述业务代理人的业务活动元素。在某些实施例中,所述业务活动元素包括但不限于业务活动时间、客户名称等。

例如,假设识别语音信息得到的文本信息为:今天上午拜访了孙志权,介绍了平安福,他说再考虑一下,因此,可以确定该文本信息的语音信号序列,该文本信息的语音信号序列如图2所示,图2是本发明实施例提供的一种语音信号序列的示意图。以如图2所示的语音信号序列中“今/天/上/午”对应的“b-time/i-time/i-time/i-time”四个标签为例,b-time表示一个时间短语的开头,i-time表示一个时间短语的中间部分,连在一起就能表示“今天上午”是一个应该被抽取为表示业务活动时间的短语;特别地,联合模型对句末添加的<eos>指定标识符标识的是这个句子代表的业务活动类型,在本例中,<eos>对应标签b-visit,表示这个模型预测这个句子描述的是一个拜访的业务活动。

s103:根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中。

本发明实施例中,数据分析装置可以根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中。在某些实施例中,所述结构化关键信息包括但不限于业务活动时间、地点、客户信息,例如,假设识别语音信息得到的文本信息为:今天上午拜访了孙志权,介绍了平安福,他说再考虑一下,确定的结构化关键信息包括7月60日(即今天)、孙志权、介绍了平安福,他说考虑一下。

在一个实施例中,数据分析装置在将所述结构化关键信息存储到业务日志中后,可以生成通知消息,并输出显示所述通知消息,所述通知消息用于通知业务代理人语音信息对应的结构化关键信息已存储备案。

通过将所述结构化关键信息以日志形式进行记录,可以支持业务代理人按照客户姓名进行查询,代理人记录的内容即可以按照时间顺序查看,又能够按照客户称呼进行查询,极大的提升信息查询效率,有助于业务代理人结合客户信息制定个性化的销售服务方案等。

s104:根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。

本发明实施例中,数据分析装置可以根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。

在一个实施例中,数据分析装置在根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息时,可以根据预设的统计时间点从所述业务日志中获取在预设时间范围内所述业务代理人发生业务活动的结构化关键信息。

在一个实施例中,数据分析装置在将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息时,可以将在所述预设时间范围内所述业务代理人发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内所述业务代理人的业务活动量信息。

在一个实施例中,数据分析装置可以获取数据查询请求,所述数据查询请求中可以携带业务代理人标识,数据分析装置可以根据所述数据查询请求中携带的业务代理人标识从所述业务日志中查询在预设时间范围内所述业务代理人标识对应的业务代理人的业务活动量信息。

在一个实施例中,数据分析装置可以获取数据查询请求,所述数据查询请求中可以携带业务代理人标识和查询时间范围,数据分析装置可以根据所述数据查询请求中携带的业务代理人标识和查询时间范围,从所述业务日志中查询在所述查询时间范围内所述业务代理人标识对应的业务代理人的业务活动量信息。具体可以图3为例,图3是本发明实施例提供的一种业务活动量的示意图。

在一个实施例中,数据分析装置在根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息时,可以获取所述业务代理人的团队标识,并根据预设的统计时间点从所述业务日志中获取在预设时间范围内与所述团队标识对应的所有业务代理人发生业务活动的结构化关键信息。

在一个实施例中,数据分析装置在将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息时,可以将在所述预设时间范围内与所述团队标识对应的所有业务代理人发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内所述业务代理人的业务活动量信息。具体可以图4为例,图4是本发明实施例提供的另一种业务活动量的示意图。

本发明实施例中,数据分析装置可以获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息;对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息;根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中;根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。通过这种实施方式,可以准确、有效地获取线下业务经营活动的数据,量化统计业务代理人线下业务经营活动的数据,有助于提升对客户信息的管理效率。

本发明实施例还提供了一种数据分析装置,该数据分析装置用于执行前述任一项所述的方法的单元。具体地,参见图5,图5是本发明实施例提供的一种数据分析装置的示意框图。本实施例的数据分析装置包括:获取单元501、识别单元502、确定单元503以及统计单元504。

获取单元501,用于获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息;

识别单元502,用于对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息;

确定单元503,用于根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中;

统计单元504,用于根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。

进一步地,所述识别单元502对所述语音信息进行识别,得到与所述语音信息对应的文本信息之前,还用于:

获取样本语音信息的语音信号序列,并对所述样本语音信号序列进行分类和标注;

将所述分类和标注后的样本语音信号序列输入预设的循环神经网络模型进行训练,得到联合识别模型。

进一步地,所述识别单元502对所述语音信息进行识别,得到与所述语音信息对应的文本信息时,具体用于:

获取所述语音信息的语音信号序列,并在所述语音信号序列的指定位置处添加指定标识符,所述指定标识符用于指示业务活动类型;

将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述业务代理人的业务活动信息。

进一步地,所述识别单元502将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述业务代理人的业务活动信息时,具体用于:

将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述语音信号序列中每个字符对应的标签,其中,所述标签包括前缀和后缀,所述前缀用于标识所述标签的位置,所述后缀用于标识所述标签的类型;

根据所述语音信号序列中每个字符对应的标签和所述指定标识符确定所述业务代理人的业务活动信息。

进一步地,所述业务活动信息包括业务活动类型和业务活动元素;所述识别单元502根据所述语音信号序列中每个字符对应的标签和所述指定标识符确定所述业务代理人的业务活动信息时,具体用于:

根据所述语音信号序列中每个字符对应的标签确定所述业务代理人的业务活动元素;

根据所述语音信号序列的指定位置处添加的指定标识符确定所述业务代理人的业务活动元素。

进一步地,所述统计单元504根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息时,具体用于:

根据预设的统计时间点从所述业务日志中获取在预设时间范围内所述业务代理人发生业务活动的结构化关键信息;

所述统计单元504将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息时,具体用于:

将在所述预设时间范围内所述业务代理人发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内所述业务代理人的业务活动量信息。

进一步地,所述统计单元504根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息时,具体用于:

获取所述业务代理人的团队标识,并根据预设的统计时间点从所述业务日志中获取在预设时间范围内与所述团队标识对应的所有业务代理人发生业务活动的结构化关键信息;

所述统计单元504将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息时,具体用于:

将在所述预设时间范围内与所述团队标识对应的所有业务代理人发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内所述业务代理人的业务活动量信息。

本发明实施例中,数据分析装置可以获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息;对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息;根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中;根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。通过这种实施方式,可以准确、有效地获取线下业务经营活动的数据,量化统计业务代理人线下业务经营活动的数据,有助于提升对客户信息的管理效率。

参见图6,图6是本发明实施例提供的一种计算机设备的示意框图。如图所示的本实施例中的设备可以包括:一个或多个处理器601;一个或多个输入设备602,一个或多个输出设备603和存储器604。上述处理器601、输入设备602、输出设备603和存储器604通过总线605连接。存储器604用于存储计算机程序,所述计算机程序包括程序,处理器601用于执行存储器604存储的程序。其中,处理器601被配置用于调用所述程序执行:

获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息;

对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息;

根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中;

根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。

进一步地,所述处理器601对所述语音信息进行识别,得到与所述语音信息对应的文本信息之前,还用于:

获取样本语音信息的语音信号序列,并对所述样本语音信号序列进行分类和标注;

将所述分类和标注后的样本语音信号序列输入预设的循环神经网络模型进行训练,得到联合识别模型。

进一步地,所述处理器601对所述语音信息进行识别,得到与所述语音信息对应的文本信息时,具体用于:

获取所述语音信息的语音信号序列,并在所述语音信号序列的指定位置处添加指定标识符,所述指定标识符用于指示业务活动类型;

将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述业务代理人的业务活动信息。

进一步地,所述处理器601将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述业务代理人的业务活动信息时,具体用于:

将所述添加指定标识符的语音信号序列输入所述联合识别模型,识别得到所述语音信号序列中每个字符对应的标签,其中,所述标签包括前缀和后缀,所述前缀用于标识所述标签的位置,所述后缀用于标识所述标签的类型;

根据所述语音信号序列中每个字符对应的标签和所述指定标识符确定所述业务代理人的业务活动信息。

进一步地,所述业务活动信息包括业务活动类型和业务活动元素;所述处理器601根据所述语音信号序列中每个字符对应的标签和所述指定标识符确定所述业务代理人的业务活动信息时,具体用于:

根据所述语音信号序列中每个字符对应的标签确定所述业务代理人的业务活动元素;

根据所述语音信号序列的指定位置处添加的指定标识符确定所述业务代理人的业务活动元素。

进一步地,所述处理器601根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息时,具体用于:

根据预设的统计时间点从所述业务日志中获取在预设时间范围内所述业务代理人发生业务活动的结构化关键信息;

所述处理器601将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息时,具体用于:

将在所述预设时间范围内所述业务代理人发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内所述业务代理人的业务活动量信息。

进一步地,所述处理器601根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息时,具体用于:

获取所述业务代理人的团队标识,并根据预设的统计时间点从所述业务日志中获取在预设时间范围内与所述团队标识对应的所有业务代理人发生业务活动的结构化关键信息;

所述处理器601将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息时,具体用于:

将在所述预设时间范围内与所述团队标识对应的所有业务代理人发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内所述业务代理人的业务活动量信息。

本发明实施例中,计算机设备可以获取业务代理人输入的语音信息,所述语音信息包括所述业务代理人线下经营业务活动的关联信息;对所述语音信息进行识别,得到与所述语音信息对应的文本信息,并根据所述文本信息确定目标核心信息,所述目标核心信息包括业务活动经营信息和/或客户信息;根据所述目标核心信息确定与所述业务活动经营信息和/或客户信息对应的结构化关键信息,并将所述结构化关键信息存储到业务日志中;根据预设的统计时间点从所述业务日志中获取在预设时间范围内发生业务活动的结构化关键信息,并将在所述预设时间范围内发生业务活动的结构化关键信息输入业务活动量统计模型,得到在所述预设时间范围内的业务活动量信息。通过这种实施方式,可以准确、有效地获取线下业务经营活动的数据,量化统计业务代理人线下业务经营活动的数据,有助于提升对客户信息的管理效率。

应当理解,在本发明实施例中,所称处理器601可以是中央处理单元(censralprocessingunis,cpu),该处理器还可以是其他通用处理器、数字信号处理器(digisalsignalprocessor,dsp)、专用集成电路(applicasionspecificinsegrasedcircuis,asic)、现成可编程门阵列(field-programmablegasearray,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。

输入设备602可以包括触控板、麦克风等,输出设备603可以包括显示器(lcd等)、扬声器等。

该存储器604可以包括只读存储器和随机存取存储器,并向处理器601提供指令和数据。存储器604的一部分还可以包括非易失性随机存取存储器。例如,存储器604还可以存储设备类型的信息。

具体实现中,本发明实施例中所描述的处理器601、输入设备602、输出设备603可执行本发明实施例提供的图1所述的方法实施例中所描述的实现方式,也可执行本发明实施例图5所描述的数据分析装置的实现方式,在此不再赘述。

本发明实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现图1所对应实施例中描述的数据分析方法,也可实现本发明图5所对应实施例的数据分析装置,在此不再赘述。

所述计算机可读存储介质可以是前述任一实施例所述的数据分析装置的内部存储单元,例如数据分析装置的硬盘或内存。所述计算机可读存储介质也可以是所述数据分析装置的外部存储装置,例如所述数据分析装置上配备的插接式硬盘,智能存储卡(smarsmediacard,smc),安全数字(securedigisal,sd)卡,闪存卡(flashcard)等。进一步地,所述计算机可读存储介质还可以既包括所述数据分析装置的内部存储单元也包括外部存储装置。所述计算机可读存储介质用于存储所述计算机程序以及所述数据分析装置所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个计算机可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,终端,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质包括:u盘、移动硬盘、只读存储器(rom,read-onlymemory)、随机存取存储器(ram,randomaccessmemory)、磁碟或者光盘等各种可以存储程序代码的介质。所述的计算机可读存储介质可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据区块链节点的使用所创建的数据等。

需要强调的是,为进一步保证上述数据的私密和安全性,上述数据还可以存储于一区块链的节点中。其中,本发明所指区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链(blockchain),本质上是一个去中心化的数据库,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。区块链可以包括区块链底层平台、平台产品服务层以及应用服务层等。

以上所述,仅为本发明的部分实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1