一种电力电子变压器电压暂降耐受能力评估方法

文档序号:28207791发布日期:2021-12-28 19:18阅读:194来源:国知局
一种电力电子变压器电压暂降耐受能力评估方法

1.本发明涉及电力电子技术领域,尤其涉及一种电力电子变压器电压暂降耐受能力评估方法。


背景技术:

2.电力电子变压器是一种含有电力电子换流器,通过中(高)频变压器实现磁耦合的电力电子装置。它除了具有传统变压器的电气隔离、电压变换功能,还可为可再生能源和储能提供交直流接口,潮流双向可控,并具有单位功率因数运行、无功功率补偿、谐波治理等功能,在当今新能源发电高渗透率与配电系统高度电力电子化趋势下具有显著的应用前景。
3.实际配电系统中,存在包括谐波、不平衡、电压波动与闪变以及电压暂降(也称之为电压跌落、电压骤降等)等各类电能质量扰动。其中,电压暂降(电压幅值下降到正常电压的10%

90%,典型持续时间为10ms到1min)在很多国家已成为影响用电设备正常运行最为突出的电能质量扰动,如使变频调速器、接触器、可编程逻辑控制器、各种自动生产线以及计算机系统等敏感用电设备非正常工作,严重时引起设备停运,生产中断,从而使企业遭受巨大的经济损失,或造成人民生活不便、甚至引起相关的社会问题等。因此,电压暂降及其相关的短时间中断问题越来越受到相关部门和研究人员的重视。
4.现有关于电力电子变压器的研究多集中于拓扑设计、调制策略设计、控制策略设计以及软开关技术等方面,对于电力电子变压器电压暂降耐受特性研究较少,且多为通过仿真分析进行的定性研究,缺少明确的电力电子变压器电压暂将耐受能力评估方法。
5.对于变频调速器、接触器、可编程逻辑控制器等设备,一般通过实验测试,对海量测试数据分析处理获得电压暂降耐受特性曲线。然而电力电子变压器电压等级一般较高,导致测试环境要求苛刻,且装置内包含大量电力电子开关器件以及电容电感元件,过电流过电压承受能力较弱。考虑电压暂降类型、负载水平等因素的影响,采用传统的实测方法需考虑工况较多,测试量较大;且电力电子变压器启停操作复杂,导致单次测试时间周期较长;更严重的是,多次测试对电力电子变压器开关器件、电容、电感寿命也具有一定影响,可能引起被测设备性能下降,进一步增加评估误差。
6.针对上述问题,本发明提供一种基于数学模型的电力电子变压器电压暂降耐受能力评估方法,通过模型计算求解获得电力电子变压器的单相、两相电压暂降耐受能力,避免了测试工作的繁琐和对受试设备寿命的影响。


技术实现要素:

7.本发明的目的是提出一种电力电子变压器电压暂降耐受能力评估方法,其特征在于,包括以下步骤:
8.步骤1:给定电力电子变压器结构、器件参数、保护阈值参数和运行状态参数;
9.步骤2:对于输入级,假设基于负序电流消除的附加控制保证网侧电流对称运行,
基于各相移相比微调的附加控制保证三相相间子模块电压平均值一致运行,考虑暂降前后输入级注入功率维持恒定,计算暂降过程中网侧三相电流有效值i
s
与电压暂降残压u
res
的函数关系为其中u
sn
为电网相电压额定值;以及桥臂电流达到输入级控制器桥臂电流限幅环节最大值i
smax
所对应的基于输入电流限制的最小暂降残压值
10.根据输入级子模块电容电压波动计算公式,计算电力电子变压器输入级暂降相的电容电压的二倍频波动幅值u
amp1
与电压暂降残压u
res
的函数关系
[0011][0012]
以及电力电子变压器输入级非暂降相的电容电压的二倍频波动幅值u
amp2
与电压暂降残压u
res
的函数关系为
[0013][0014]
其中,ω为系统电压角频率,u
mn
为子模块电容电压额定值;
[0015]
根据输入级子模块电容欠电压保护整定值u
tl
,输入级子模块电容过电压保护整定值u
th
,确定基于电容电压限制的最小暂降残压值u
res2

[0016]
步骤3:对于隔离级,考虑负载功率恒定,根据输入级子模块电容电压u
m
、移相比d、隔离级高频变压器漏感l
h
、隔离级高频变压器开关频率f
s
参数之间的函数关系
[0017][0018]
计算得到移相比d=0.5限制下,隔离级可长时承受的基于移相比限制的输入级子模块电容电压最小值u
tl1

[0019][0020]
假设传输功率恒定,计算原边电流有效值i
dp
与子模块电容电压u
m
的函数关系根据原边开关器件过流保护整定值i
tdp
,当i
dp
=i
tdp
时,得到隔离级可长时承受的基于原边电流限制的输入级子模块电容电压最小值
[0021]
步骤4:比较u
tl
、u
tl1
与u
tl2
,令u
ml
等于三者之间的较大值;
[0022]
步骤5:当u
res1
大于u
res2
时,受控制器电流限幅环节限制,计算输入级最大输入功率p
smax
与系统电压暂降残压u
res
的函数关系,
[0023]
[0024]
步骤6:以u
ml
为下限,根据能量守恒定理,利用下式计算得到输入级子模块电容可承受最大电压暂降时间t与电压暂降残压u
res
的函数关系
[0025]
(u
res2
<u
res
<u
res1
)
[0026]
步骤7:以低压直流侧欠电压保护整定值为下限,根据能量守恒定理,利用下式计算仅依靠输入级子模块电容和低压侧直流电容支撑的电力电子变压器可承受最大电压暂降时间t0[0027][0028]
步骤8:当u
res2
大于u
res1
时,根据u
res2
与t0绘制电力电子变压器电压暂降矩形耐受曲线;当u
res2
小于u
res1
时,根据u
res1
、u
res2
、f
t
(u
res
)与t0绘制电力电子变压器电压暂降阶梯形耐受曲线。
[0029]
所述步骤1中的器件参数包括:输入级滤波电感l
s
,输入级子模块电容c
m
,输入级子模块级联数n,隔离级原副边变比k,隔离级高频变压器漏感l
h
,隔离级高频变压器开关频率f
s
,低压直流侧电容c
dc
,低压直流侧额定电压u
dc
,低压直流侧负载r
l

[0030]
保护阈值参数包括:输入级控制器桥臂电流限幅环节最大值i
smax
,隔离级原边开关器件过流保护整定值i
tdp
,输入级子模块电容欠电压保护整定值u
tl
,输入级子模块电容过电压保护整定值u
th
,低压直流侧电容欠电压保护整定值u
td
,输入级调制比上限值m
max
,隔离级移相比上限值d
max

[0031]
运行状态参数包括:电力电子变压器暂降前运行功率p
l
,电力电子变压器额定容量p
n

[0032]
电力电子变压器的输入级和隔离级的控制方式如下:
[0033]
输入级采用电压外环、电流内环、定子模块平均电压的pi双环基础控制,保证三相的相内子模块电压一致的均衡电压附加控制,以及保证网侧电流对称运行的基于负序电流消除的附加控制;隔离级采用定低压侧直流电压的pi单环移相基础控制,以及保证三相的相间子模块电压平均电压一致的基于各相移相比微调的附加控制。
[0034]
本发明的有益效果在于:
[0035]
本发明综合考虑电力电子变压器输入级和隔离级器件参数限制与控制器参数限制,无需繁琐的测试工作,即可通过模型计算可获取电力电子变压器对于单相、两相电压暂降的耐受曲线,为评估电力电子变压电压暂降耐受能力提供了一种便捷方式,为具有电压暂降耐受能力需求的电力电子变压器器件参数与控制参数设计提供了理论依据,具有较好的应用价值。
附图说明
[0036]
图1为级联型电力电子变压器拓扑结构图;
[0037]
图2为级联型电力电子变压器输入级和隔离级子单元的电路图;
[0038]
图3为电力电子变压器单相/两相电压暂降矩形耐受特性曲线;
[0039]
图4为电力电子变压器单相/两相电压暂降阶梯形耐受特性曲线;
[0040]
图5为电力电子变压器电压暂降耐受能力评估方法流程图。
具体实施方式
[0041]
本发明提出一种电力电子变压器电压暂降耐受能力评估方法,下面结合附图和具体实施例对本发明做进一步说明。
[0042]
图1为级联型电力电子变压器拓扑结构图,图2为级联型电力电子变压器输入级和隔离级子单元的电路图,包括输入级、隔离级两部分,输入级采用h桥级联结构,隔离级采用双有源桥结构。图5为电力电子变压器电压暂降耐受能力评估方法流程图,接下来针对图1所示拓扑的单相电压暂降耐受能力进行评估。
[0043]
电力电子变压器暂降前运行功率p
l
,电力电子变压器额定容量p
n
,给定的设备参数包括输入级滤波电感l
s
,输入级子模块电容c
m
,输入级子模块级联数n,隔离级高频变压器漏感l
h
,隔离级原副边变比k,隔离级高频变压器开关频率f
s
,低压直流侧电容c
dc
,低压直流侧负载大小r
l
,输入级控制器桥臂电流限幅环节最大值i
smax
,隔离级原边开关器件过流保护整定值i
tdp
,输入级子模块电容欠电压保护整定值u
tl
,输入级子模块电容过电压保护整定值u
th
,低压直流侧电容欠电压保护整定值u
td
,输入级调制比上限值为1,隔离级采用单移相控制,移相比上限值为0.5,低压直流侧额定电压u
dc

[0044]
计算得到输入级桥臂电流有效值与系统电压暂降残差值函数关系为
[0045][0046]
式中,u
sn
为电网相电压额定值。将i
s
=i
smax
带入式(6),解得
[0047][0048]
根据式(8)计算得到电力电子变压器输入级暂降相子模块电容电压二倍频波动幅值大小u
amp1

[0049][0050]
ω为系统电压角频率,根据式(9)计算得到电力电子变压器输入级非暂降相子模块电容电压二倍频波动幅值大小u
amp2

[0051][0052]
当u
amp1
大于u
amp2
时,根据输入级子模块电容欠电压保护整定值u
tl
,输入级子模块电容过电压保护整定值u
th
,确定可同时满足上述整定值要求的二倍频波动幅值最大值u
amp1
,将其带入式(8)计算得到对应u
res2

[0053]
当u
amp1
小于u
amp2
时,根据输入级子模块电容欠电压保护整定值u
tl
,输入级子模块电容过电压保护整定值u
th
,确定可同时满足上述整定值要求的二倍频波动幅值最大值u
amp2
,将其带入式(9)计算得到对应u
res2

[0054]
根据式(10)计算得到输入级子模块电容电压与隔离级移相比的函数关系。
[0055][0056]
将d=0.5带入可计算得到
[0057][0058]
根据式(12)可以计算得到隔离级原边电流有效值i
dp
与子模块电容电压的函数关系
[0059][0060]
当i
dp
=i
tdp
时,带入式(12)可得
[0061][0062]
比较u
tl
、u
tl1
与u
tl2
,令u
ml
等于三者之间的较大值。
[0063]
假设电压暂降过程中,输入级控制器调制比输出未饱和,有功电流分量达到限值i
smax
,则电力电子变压器最大输出功率与暂降残压的函数关系如式(14)所示。
[0064][0065]
以u
ml
为下限,根据能量守恒定理,利用式(15)计算得到输入级子模块电容可承受最大电压暂降时间与电压暂降残压的函数关系。
[0066][0067]
将式(14)带入式(15)可得
[0068][0069]
以低压直流侧欠电压保护整定值为下限,根据能量守恒定理,利用式(17)计算仅依靠输入级子模块电容和低压侧直流电容支撑的电力电子变压器可承受最大电压暂降时间t0。
[0070][0071]
比较u
res1
与u
res2

[0072]
当u
res1
小于u
res2
时,根据u
res2
与t0绘制电力电子变压器电压暂降矩形耐受曲线,其形式如图3所示。
[0073]
当u
res1
大于u
res2
时,根据u
res1
、u
resh
、f
t
(u
res
)与t0绘制电力电子变压器电压暂降阶梯型耐受曲线,其形式如图4所示。
[0074]
此实施例仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,
都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1