一种基于卷积神经网络的高效高分辨力缺陷无损检测方法

文档序号:28318372发布日期:2022-01-04 20:45阅读:80来源:国知局
一种基于卷积神经网络的高效高分辨力缺陷无损检测方法

1.本发明涉及缺陷无损检测技术领域,是一种基于卷积神经网络的高效高分辨力缺陷无损检测方法。


背景技术:

2.在不损伤物质材料性能的基础上,对复杂几何形状的材料进行微小缺陷的检测是一个非常困难的问题。尤其对于金属材料的无损检测更是极为重要的质量控制技术手段,以gh4169合金为例,其广泛应用于航空发动机涡轮盘、压气机鼓筒、机匣等关键部件中,对于这些关键部件即使存在微小缺陷和疲劳损伤都可能导致灾难性的后果,因此对其进行高精度的无损检测至关重要。超声波检测因其具有成本低、检测快速、对物质材料性能无损等优点是所有无损检测方法中应用最广泛的检测方法之一,特别是在航空、船舶、核工业等工业领域中,更是不可缺少的检测手段。随着工业检测中对检测可靠性要求的不断提高,对超声波检测也要求其检测速度更快、检测精度更高、对缺陷的描述更准确,因此如何在无损检测方面提高超声的上述性能的技术越来越受到重视,并且成为研究热点。
3.北京金风慧能技术有限公司提出一种工件内部损伤检测方法及装置(工件内部损伤检测方法及装置。公开号:cn107505395a)。该方法包括:获取超声波从目标工件的工件表面经由工件内部到达工件底部、并从工件底部返回到工件表面的现场回波数据;根据所述目标工件的现场回波数据与基准数据的比对结果,确定所述目标工件的内部损伤情况,提高了检测效率和检测精确度,该方案无需采用专门的超声探伤仪,使得检测操作简单,检测成本降低。该方法存在的问题在于:需要预先获得目标工件的基准数据,因此不具有通用性,同时该方法仅能检测损伤是否存在以及损伤的大概位置,无法对损伤进行精确定位。
4.通用电气公司提出一种方案(methods of non

destructive testing and ultrasonic inspection of composite materials。美国专利公开号:us20170199160a1),首先定位超声换能器相对于被测件的位置,然后从至少一次b扫中收集被测件的b扫数据,再从至少一次c扫中收集被测件的c扫数据,接下来根据预先确定的被测件的几何形状去除数据的随机噪声和相干噪声,得到滤波后的数据,最终生成v扫描图像,从而确定被测件的多个损伤指数。该方法存在的问题在于:需要预先确定被测件的几何形状,而且需要对被测件进行b扫和c扫,无法满足快速检测。


技术实现要素:

5.本发明解决被测工件缺陷无损检测速度慢、检测精度低的问题,从而提高工业生产中的质量控制技术,本发明提供了一种基于卷积神经网络的高效高分辨力缺陷无损检测方法,本发明提供了以下技术方案:
6.一种基于卷积神经网络的高效高分辨力缺陷无损检测方法,包括以下步骤:
7.步骤1:通过超声相控阵向被测工件发射偏转角度为0的平面波,对发射的平面波的散射回波数据进行采集,利用fir滤波器对回波数据进行时域滤波,滤除信号中的随机噪
声;
8.步骤2:基于卷积神经网络算法的超声成像,根据得到的散射回波信号进行预处理,然后将预处理后的信号作为卷积神经网络的输入,对被测工件进行成像,得到被测工件的粗扫图像;
9.步骤3:基于sobel算子的缺陷边缘检测,利用canny算子对最终成像结果中的亮斑进行边缘提取,从而得到缺陷的位置信息、形状信息和大小范围信息。
10.优选地,所述步骤2中预处理过程具体为:
11.步骤2.1:以超声相控阵的几何中心为坐标原点,建立直角坐标系,确定超声相控阵各阵元中心在坐标系中的位置坐标,:对被测工件的成像平面进行网格划分;
12.计算发射的平面波到达坐标为(x
(i,j)
,y
(i,j)
,z
(i,j)
)的网格中心的距离d
(i,j)

13.d
(i,j)
=z
(i,j)
ꢀꢀ
(1)
14.利用公式(1)得到对应发射信号的成像平面内网格中心的发射传播距离矩阵d:
[0015][0016]
其中,n
x
和n
z
为在x方向和z方向的网格划分数量;
[0017]
步骤2.2:计算中心坐标为(x
k
,y
k
,z
k
)的第k个接收阵元与坐标为(x
(i,j)
,y
(i,j)
,z
(i,j)
)的网格中心之间的距离d
(
'
k,i,j)

[0018][0019]
利用公式(3)得到对应第k个接收阵元的成像平面内网格中心的接收传播距离矩阵d'
k

[0020][0021]
当被测工件为各向同性介质,则超声体波在被测工件中的传播速度一致,超声体波在被测工件中传播的速度为c,则得到从平面波发射经由成像平面内各个网格中心再被第k个接收阵元接收的传播时间t
(n,k)

[0022]
t
(n,k)
=(d+d'
k
)/c
ꢀꢀ
(5)
[0023]
得到任一网格中心位置的超声回波信号强度需要利用线性插值原理,线性插值基本原理有:
[0024][0025]
确定t时刻脉冲回波信号的幅值,小于t时刻且距离t时刻最近的回波信号的离散采样时刻为t0,对应的信号幅值为a(t0),大于t时刻且距离t时刻最近的回波信号的离散采样时刻为t0+δt,δt为离散回波信号的采样时间间隔,对应的信号幅值为a(t0+δt),t时刻
脉冲回波信号的幅值是a(t),则根据线性插值原理计算:
[0026][0027]
得到对应第k个接收阵元的成像平面内网格中心的超声回波信号幅值矩阵a
k

[0028][0029]
优选地,所以网格划分密度设置为1个/mm2,确定各个网格中心在坐标系中的位置坐标。
[0030]
优选地,步骤2中卷积神经网络训练过程包括以下步骤:采用表示被测工件内部的真实图像,表示换能器阵列n个阵元接收到的信号经过预处理后得到的信号;
[0031]
在图像重构过程中,y是a通过某个函数被预估的;利用f
nn
(a;θ)表示卷积神经网络的波束成形函数,其中,θ表示神经网络的参数,利用卷积神经网络进行图像重构的目的就是寻找最优参数θ
*
使得被预估的图像与真实图像y之间的误差最小,利用函数关系表示如下:
[0032][0033]
其中l(y,f
nn
(a,θ))表示预估图像与真实图像之间误差的损失函数;
[0034]
选择基于结构化相似性(ms

ssim)的函数作为损失函数,对于第i行第j列的真实像素与预估像素之间的ssim计算如下:
[0035][0036]
其中,c1和c2是根据经验选择的标量参数,目的是提高损失的计算稳定性,和分别是y
(i,j)
和临近区域像素的平均值,和分别是y
(i,j)
和临近区域像素的方差,表示y
(i,j)
和临近区域像素的协方差。ssim的值在

1到1之间变化,ssim=1表示两幅图像之间完全相关,因此基于ssim的损失函数定义为:
[0037][0038]
通过损失函数形式来对两幅图像进行比较,损失函数形式如下:
[0039][0040]
其中,w表示对预估图像进行缩放的正权重因子;
[0041]
对第i行第j列的真实像素与预估像素按照公式(12)的形式计算ssim值对w的微分有:
[0042][0043]
其中c1和c2被忽略了,则最优权重w通过对所有像素进行求解得到:
[0044][0045]
定义卷积神经网络的损失函数后,定义卷积神经网络的结构;卷积神经网络包含m个重复的卷积块,每个卷积块包括一个2d convolution layer、一个batch normalization layer和一个rectified linear unit activation layer;
[0046]
定义好卷积神经网络的结构后,则利用仿真数据和被测工件的真实数据对卷积神经网络进行训练,得到各个卷积块中的最优参数,从而得到训练好的卷积神经网络;
[0047]
通过被测工件的预处理后的回波数据和训练好的卷积神经网络,得到被测工件内部的粗扫成像。
[0048]
优选地,所述步骤3具体为:
[0049]
步骤3.1:对最终的成像结果进行高斯滤波,对高斯曲面进行离散采样和归一化得出,归一化指的是卷积核所有元素之和为1,标准差σ=1.4,大小为5
×
5的高斯滤波模板k为:
[0050][0051]
步骤3.2:利用sobel算子做梯度幅值和方向的计算,对sobel算子有:
[0052][0053][0054]
梯度幅值的计算公式为:
[0055][0056]
梯度方向的计算公式为:
[0057]
r(x,y)=arctan(s
y
/s
x
)
ꢀꢀ
(19)
[0058]
步骤3.3:为了获得单个像素宽度的边缘,sobel算子对图像的幅值矩阵进行非极
大值抑制,先将梯度方向r(x,y)以就近原则归类到四个角度中(0~45,45~90,90~135,135~180),获取对应点所处8值邻域内的其他8个点中距离梯度向量最近的两个点对(g1,g2)、(g3,g4),将点处的梯度幅值分别与g1,g2,g3,g4做对比,当小于其中任何一个,则该点处幅值为0,否则认为是潜在边缘,保留其幅值,最后利用双阈值法进行检测;
[0059]
在施加非极大值抑制后剩余的像素,更准确地表示图像中的实际边缘用弱梯度值过滤边缘像素,同时保留其具有高梯度值的边缘像素,即通过选择高低阈值来实现,得到被测工件精确的缺陷边缘信息,进而利用边缘提取信息精确计算被测对象内部缺陷的位置信息和尺寸信息。
[0060]
优选地,当像素梯度值高于高阈值,则标记为强边缘像素;当边缘像素的梯度值小于高阈值并且大于低阈值,则标记为弱边缘像素;当边缘像素的梯度值小于低阈值,则被抑制。
[0061]
本发明具有以下有益效果:
[0062]
本发明首先利用超声相控阵发射单次平面波,相控阵的所有阵元同时接收回波数据,然后对回波数据进行预处理,得到换能器阵列n个阵元对应的目标区域像素矩阵,将预处理得到的矩阵作为训练好的卷积神经网络的输入信号,经过逐层计算,最后输出目标区域的成像结果,通过这种方法成像极大地提高了算法的成像速度,因为发射次数远远小于全矩阵捕获方式和相干平面波成像方式,同时利用神经网络强大的计算能力,可以有效提高最终成像结果的分辨力。最后,对卷积神经网络输出的图像利用sobel算子进行边缘提取,得到被测对象内部缺陷的位置信息和尺寸信息,从而实现缺陷的高准确度表征。
附图说明
[0063]
图1为基于卷积神经网络的高效高分辨力缺陷无损检测方法流程图;
[0064]
图2为超声平面波发射示意图;
[0065]
图3为卷积神经网络结构图。
具体实施方式
[0066]
以下结合具体实施例,对本发明进行了详细说明。
[0067]
具体实施例一:
[0068]
根据图1至图3所示,本发明提供一种基于卷积神经网络的高效高分辨力缺陷无损检测方法,具体步骤如下:
[0069]
步骤一,超声平面波信号发射与回波接收
[0070]
通过超声相控阵向被测工件发射偏转角度为0的平面波,然后对发射的平面波的散射回波数据进行采集,然后利用fir滤波器对回波数据进行时域滤波,滤除信号中的随机噪声。
[0071]
步骤二,基于卷积神经网络算法的超声成像
[0072]
利用第一步得到的散射回波信号进行预处理,然后将预处理后的信号作为卷积神经网络的输入,对被测工件进行成像,得到被测工件的粗扫图像。
[0073]
散射回波数据的预处理过程如下:首先以超声相控阵的几何中心为坐标原点,建立直角坐标系,确定超声相控阵各阵元中心在坐标系中的位置坐标,然后对被测工件的成
像平面进行网格划分,因为是对被测工件进行粗扫,所以网格划分密度设置为1个/mm2,确定各个网格中心在坐标系中的位置坐标。进一步计算发射的平面波到达坐标为(x
(i,j)
,y
(i,j)
,z
(i,j)
)的网格中心的距离d
(i,j)

[0074]
d
(i,j)
=z
(i,j)
ꢀꢀ
(1)
[0075]
利用公式(1)得到对应发射信号的成像平面内网格中心的发射传播距离矩阵d:
[0076][0077]
其中n
x
和n
z
为在x方向和z方向的网格划分数量。
[0078]
接下来计算中心坐标为(x
k
,y
k
,z
k
)的第k个接收阵元与坐标为(x
(i,j)
,y
(i,j)
,z
(i,j)
)的网格中心之间的距离d'
(k,i,j)

[0079][0080]
利用公式(3)得到对应第k个接收阵元的成像平面内网格中心的接收传播距离矩阵d'
k

[0081][0082]
假设被测工件为各向同性介质,则超声体波在被测工件中的传播速度一致,超声体波在被测工件中传播的速度为c,则可以得到从平面波发射经由成像平面内各个网格中心再被第k个接收阵元接收的传播时间t
(n,k)

[0083]
t
(n,k)
=(d+d'
k
)/c
ꢀꢀ
(5)
[0084]
因为采集得到的超声回波信号为离散信号,所以若要得到任一网格中心位置的超声回波信号强度需要利用线性插值原理,线性插值基本原理有:
[0085][0086]
求解t时刻脉冲回波信号的幅值,小于t时刻且距离t时刻最近的回波信号的离散采样时刻为t0,其对应的信号幅值为a(t0),大于t时刻且距离t时刻最近的回波信号的离散采样时刻为t0+δt,δt为离散回波信号的采样时间间隔,其对应的信号幅值为a(t0+δt),t时刻脉冲回波信号的幅值是a(t),则根据线性插值原理计算:
[0087][0088]
利用此关系即可得到对应第k个接收阵元的成像平面内网格中心的超声回波信号幅值矩阵a
k

[0089][0090]
至此完成超声回波数据的预处理。
[0091]
卷积神经网络训练过程如下:利用表示被测工件内部的真实图像,
[0092]
表示换能器阵列n个阵元接收到的信号经过预处理后得到的信号。在图像重构过程中,y是a通过某个函数被预估的。我们利用f
nn
(a;θ)表示卷积神经网络的波束成形函数,其中θ表示神经网络的参数,利用卷积神经网络进行图像重构的目的就是寻找最优参数θ
*
使得被预估的图像与真实图像y之间的误差最小,利用函数关系表示如下:
[0093][0094]
其中l(y,f
nn
(a,θ))表示预估图像与真实图像之间误差的损失函数。
[0095]
对于神经网络而言,损失函数影响着网络的训练过程,我们选择基于结构化相似性(ms

ssim)的函数作为损失函数,对于第i行第j列的真实像素与预估像素之间的ssim计算如下:
[0096][0097]
其中c1和c2是根据经验选择的标量参数,目的是提高损失的计算稳定性,和分别是y
(i,j)
和临近区域像素的平均值,和分别是y
(i,j)
和临近区域像素的方差,表示y
(i,j)
和临近区域像素的协方差。ssim的值在

1到1之间变化,ssim=1表示两幅图像之间完全相关,因此基于ssim的损失函数定义为:
[0098][0099]
因为利用回波数据得到的预估图像与真实图像的单位不同,所以在对两者进行比较时原理是不清楚的,同时标准损失函数又对归一化比较敏感,因此我们提出一种新的损失函数形式来对两幅图像进行比较,新的损失函数形式如下:
[0100][0101]
其中w表示对预估图像进行缩放的正权重因子。
[0102]
对第i行第j列的真实像素与预估像素我们按照公式(12)的形式计算其ssim值对w的微分有:
[0103]
[0104]
其中c1和c2被忽略了,则最优权重w可以通过对所有像素进行求解得到:
[0105][0106]
定义好卷积神经网络的损失函数后,我们定义卷积神经网络的结构。卷积神经网络包含m个重复的卷积块,每个卷积块包括一个2dconvolution layer、一个batch normalization layer和一个rectified linear unit activation layer。
[0107]
定义好卷积神经网络的结构后,则利用仿真数据和被测工件的真实数据对卷积神经网络进行训练,得到各个卷积块中的最优参数,从而得到训练好的卷积神经网络。
[0108]
最后通过被测工件的预处理后的回波数据和训练好的卷积神经网络,即可得到被测工件内部的粗扫成像。
[0109]
步骤三、基于sobel算子的缺陷边缘检测
[0110]
因为超声波在被测工件中进行传播时,遇到被测工件缺陷会产生回波信号,则在最终的成像图中有缺陷位置会呈现亮斑,所以利用canny算子对最终成像结果中的亮斑进行边缘提取,从而得到缺陷的位置信息、形状信息和大小范围信息。首先对最终的成像结果进行高斯滤波,主要作用是在不丢失图像的主要边缘信息的同时滤除部分高频噪声。高斯滤波是用某一尺寸的二维高斯核与图像进行卷积,高斯核是对连续高斯函数的离散近似,通常对高斯曲面进行离散采样和归一化得出,归一化指的是卷积核所有元素之和为1,标准差σ=1.4,大小为5
×
5的高斯滤波模板k为:
[0111][0112]
然后利用sobel算子做梯度幅值和方向的计算,对sobel算子有:
[0113][0114][0115]
梯度幅值的计算公式为:
[0116][0117]
梯度方向的计算公式为:
[0118]
r(x,y)=arctan(s
y
/s
x
)
ꢀꢀ
(19)
[0119]
为了获得单个像素宽度的边缘,sobel算子对图像的幅值矩阵进行非极大值抑制,
先将梯度方向r(x,y)以就近原则归类到四个角度中(0~45,45~90,90~135,135~180),然后获取该点所处8值邻域内的其他8个点中距离梯度向量最近的两个点对(g1,g2)、(g3,g4),将该点处的梯度幅值分别与g1,g2,g3,g4做对比,如果小于其中任何一个,则该点处幅值为0,否则认为它是潜在边缘,保留其幅值,最后利用双阈值法进行检测。在施加非极大值抑制后剩余的像素可以更准确地表示图像中的实际边缘,但是仍然存在由于噪声和颜色变化引起的一些边缘像素,为了解决这些杂散相应,必须用弱梯度值过滤边缘像素,同时保留其具有高梯度值的边缘像素,即通过选择高低阈值来实现,如果像素梯度值高于高阈值,则将其标记为强边缘像素;如果边缘像素的梯度值小于高阈值并且大于低阈值,则将其标记为弱边缘像素;如果边缘像素的梯度值小于低阈值,则会被抑制,从而便可得到被测工件精确的缺陷边缘信息,进而利用边缘提取信息精确计算被测对象内部缺陷的位置信息和尺寸信息。
[0120]
被测对象为铝合金试块,其为各向同性材料,利用64阵元,中心频率为5mhz的超声相控阵进行检测,相控阵阵元间距为0.5mm。首先,利用超声相控阵控制系统同时激励所有的阵元,发射偏转角度为0
°
的超声平面波,然后切换收发开关,令所有阵元同时接收来自被测对象内部边界的反射回波。根据被测对象实际尺寸大小进行网格划分,计算从平面波发射,经过各个网格点,到被相控阵各阵元接收时经历的传播时间,结合实际回波信号,利用线性插值算法计算各个阵元回波信号映射到目标检测区域的像素值。将预处理得到的各个阵元对应的目标区域像素值作为卷积神经网络的输入信号,经过逐层计算,得到目标区域的成像结果。最后,再利用基于sobel算子的边缘提取算法对成像结果进行处理,得到被测对象内部结构的边缘信息,根据边缘信息便可以准确计算被测对象内部缺陷的位置信息和尺寸信息,实现对被测对象的高效高分辨力无损检测。
[0121]
本发明提出的一种基于卷积神经网络的高效高分辨力缺陷无损检测方法,利用单次平面波发射采集到的回波数据,通过卷积神经网络计算输出高分辨力成像结果,有效地提高了检测算法的效率,缩短了检测时间,同时通过基于sobel算子的边缘提取算法精准获取被测对象内部缺陷的位置和尺寸信息。
[0122]
以上所述仅是一种基于卷积神经网络的高效高分辨力缺陷无损检测方法的优选实施方式,一种基于卷积神经网络的高效高分辨力缺陷无损检测方法的保护范围并不仅局限于上述实施例,凡属于该思路下的技术方案均属于本发明的保护范围。应当指出,对于本领域的技术人员来说,在不脱离本发明原理前提下的若干改进和变化,这些改进和变化也应视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1