1.本公开涉及计算机技术领域,具体涉及用于验证图像的方法和装置。
背景技术:2.随着人工智能技术的快速发展,深度学习网络被广泛的应用于图像处理(如图像识别、图像转换)等领域。在基于深度学习网络执行图像处理任务时,通常会采用对抗防御方法以避免对抗样本对深度学习网络的攻击。现有的对抗防御方法包括:对输入网络的样本进行对抗样本检测,对深度学习网络进行对抗训练,或者对样本进行数据预处理。
3.然而,对抗样本检测的对抗防御方法存在防御度差,对抗训练以及样本数据预处理的对抗防御方法存在会导致深度学习网络对无噪声样本的检测性能差的问题。
技术实现要素:4.本公开提供了一种用于验证图像的方法、装置、电子设备以及计算机可读存储介质。
5.根据本公开的第一方面,提供了一种用于验证图像的方法,包括:获取待验证图像,并采用多个目标局部特征识别模型分别识别待验证图像的多个局部区域的第一局部特征;获取基准图像,并采用多个目标局部特征识别模型分别识别基准图像的多个局部区域的第二局部特征;针对多个目标局部特征识别模型中的每一个目标局部特征识别模型,获取采用目标局部特征识别模型识别出的第一局部特征、与采用目标局部特征识别模型识别出的第二局部特征之间的特征相似度;根据获取的多个特征相似度,确定待验证图像是否通过验证。
6.在一些实施例中,获取待验证图像,并采用多个目标局部特征识别模型分别识别待验证图像的多个局部区域的第一局部特征,包括:获取待验证人脸图像,并将待验证人脸图像划分为不同的人脸区域;针对待验证人脸图像中的每一个人脸区域,采用用于识别人脸区域的特征的目标局部特征识别模型识别该人脸区域的第一局部特征;获取基准图像,并采用多个目标局部特征识别模型分别识别基准图像的多个局部区域的第二局部特征,包括:获取基准人脸图像,并将基准人脸图像划分为不同的人脸区域;针对基准人脸图像中的每一个人脸区域,采用用于识别人脸区域的特征的目标局部特征识别模型识别该人脸区域的第二局部特征。
7.在一些实施例中,根据获取的多个特征相似度,确定待验证图像是否通过验证,包括:响应于确定多个特征相似度中,存在至少一个特征相似度满足第一相似度阈值,确定待验证图像通过验证。
8.在一些实施例中,根据获取的多个特征相似度,确定待验证图像是否通过验证,包括:响应于确定多个特征相似度中的每一个特征相似度均满足第二相似度阈值,确定待验证图像通过验证。
9.根据本公开的第二方面,提供了一种用于验证图像的方法,包括:获取待验证图
像,并采用训练好的特征识别模型识别待验证图像的第一全局特征;获取基准图像,并采用训练好的特征识别模型识别基准图像的第二全局特征;响应于确定第一全局特征与第二全局特征之间的相似度满足第三相似度阈值,采用第一方面中的方法验证待验证图像;或者,响应于确定第一全局特征与第二全局特征之间的相似度不满足第三相似度阈值,确定待验证图像未通过验证。
10.根据本公开的第三方面,提供了一种用于训练模型的方法,包括:获取至少一条样本数据,样本数据包括样本图像、以及样本图像中各个局部区域的局部图像的标签;获取用于识别各个局部区域的特征的各个初始局部特征识别模型;针对各个区域的局部图像中的每一个局部图像,将局部图像输入用于识别局部图像所属局部区域的特征的初始局部特征识别模型,并获得该初始局部特征识别模型输出的局部特征;获取局部图像的标签与局部特征所表征的标签之间的损失;根据获取到的多个损失的均值,训练多个初始局部特征识别模型,并获得多个目标局部特征识别模型,其中,目标局部特征识别模型应用于第一方面或第二方面中的方法。
11.根据本公开的第四方面,提供了一种用于验证图像的装置,包括:第一识别单元,被配置为获取待验证图像,并采用多个目标局部特征识别模型分别识别待验证图像的多个局部区域的第一局部特征;第二识别单元,被配置为获取基准图像,并采用多个目标局部特征识别模型分别识别基准图像的多个局部区域的第二局部特征;匹配单元,被配置为针对多个目标局部特征识别模型中的每一个目标局部特征识别模型,获取采用目标局部特征识别模型识别出的第一局部特征、与采用目标局部特征识别模型识别出的第二局部特征之间的特征相似度;验证单元,被配置为根据获取的多个特征相似度,确定待验证图像是否通过验证。
12.在一些实施例中,第一识别单元,包括:第一划分模块,被配置为获取待验证人脸图像,并将待验证人脸图像划分为不同的人脸区域;第一识别模块,被配置为针对待验证人脸图像中的每一个人脸区域,采用用于识别人脸区域的特征的目标局部特征识别模型识别该人脸区域的第一局部特征;第二识别单元,包括:第二划分模块,被配置为获取基准人脸图像,并将基准人脸图像划分为不同的人脸区域;第二识别模块,被配置为针对基准人脸图像中的每一个人脸区域,采用用于识别人脸区域的特征的目标局部特征识别模型识别该人脸区域的第二局部特征。
13.在一些实施例中,验证单元,包括:第一验证模块,被配置为响应于确定多个特征相似度中,存在至少一个特征相似度满足第一相似度阈值,确定待验证图像通过验证。
14.在一些实施例中,验证单元,包括:第二验证模块,被配置为响应于确定多个特征相似度中的每一个特征相似度均满足第二相似度阈值,确定待验证图像通过验证。
15.根据本公开的第五方面,提供了一种用于验证图像的装置,包括:第三识别单元,被配置为获取待验证图像,并采用训练好的特征识别模型识别待验证图像的第一全局特征;第四识别单元,被配置为获取基准图像,并采用训练好的特征识别模型识别基准图像的第二全局特征;第一校验单元,被配置为响应于确定第一全局特征与第二全局特征之间的相似度满足第三相似度阈值,采用第一方面中的方法验证待验证图像;或者,第二校验单元,被配置为响应于确定第一全局特征与第二全局特征之间的相似度不满足第三相似度阈值,确定待验证图像未通过验证。
16.根据本公开的第六方面,提供了一种用于训练模型的装置,包括:第一获取单元,被配置为获取至少一条样本数据,样本数据包括样本图像、以及样本图像中各个局部区域的局部图像的标签;第二获取单元,被配置为获取用于识别各个局部区域的特征的各个初始局部特征识别模型;预测单元,被配置为针对各个区域的局部图像中的每一个局部图像,将局部图像输入用于识别局部图像所属局部区域的特征的初始局部特征识别模型,并获得该初始局部特征识别模型输出的局部特征;计算单元,被配置为获取局部图像的标签与局部特征所表征的标签之间的损失;训练单元,被配置为根据获取到的多个损失的均值,训练多个初始局部特征识别模型,并获得多个目标局部特征识别模型,其中,目标局部特征识别模型应用于第一方面或第二方面中的方法。
17.根据本公开的第七方面,本公开的实施例提供了一种电子设备,包括:一个或多个处理器:存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如第一方面提供的用于验证图像的方法,或者实现如第二方面提供的用于验证图像的方法,或者实现如第三方面提供的用于训练模型的方法。
18.根据本公开的第八方面,本公开的实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,程序被处理器执行时实现如第一方面提供的用于验证图像的方法,或者实现如第二方面提供的用于验证图像的方法,或者实现如第三方面提供的用于训练模型的方法。
19.本公开提供的用于验证图像的方法、装置,包括:获取待验证图像,并采用多个目标局部特征识别模型分别识别待验证图像的多个局部区域的第一局部特征;获取基准图像,并采用多个目标局部特征识别模型分别识别基准图像的多个局部区域的第二局部特征;针对多个目标局部特征识别模型中的每一个目标局部特征识别模型,获取采用目标局部特征识别模型识别出的第一局部特征、与采用目标局部特征识别模型识别出的第二局部特征之间的特征相似度;根据获取的多个特征相似度,确定待验证图像是否通过验证,可以提高系统对对抗样本的防御性能。另外,该方法是基于局部区域的特征相似度验证图像,并不需要对样本数据进行预处理,避免对干净样本(无噪声样本)与对抗样本(加噪样本)一并进行了预处理,导致的对无噪声样本的检测性能差的问题。以及该方法并非基于采用对抗训练方法获得的网络验证图像,可以避免采用对抗训练方法获得的网络在对无噪声样本进行检测时性能差的问题。
20.应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
21.附图用于更好地理解本方案,不构成对本技术的限定。其中:
22.图1是本技术的实施例可以应用于其中的示例性系统架构图;
23.图2是根据本技术的用于验证图像的方法的一个实施例的流程图;
24.图3是根据本技术的用于验证图像的方法的另一个实施例的流程图;
25.图4是根据本技术的用于验证图像的方法的一个实施例的流程图;
26.图5是根据本技术的用于验证图像的方法的一个应用场景中全局特征识别的流程图;
27.图6是根据本技术的用于验证图像的方法的一个应用场景中局部特征识别的流程图;
28.图7是根据本技术的用于训练图像的方法的一个实施例的流程图;
29.图8是根据本技术的用于验证图像的装置的一个实施例的结构示意图;
30.图9是根据本技术的用于验证图像的装置的一个实施例的结构示意图;
31.图10是根据本技术的用于训练模型的装置的一个实施例的结构示意图;
32.图11是用来实现本技术实施例的用于验证图像的方法的电子设备的框图。
具体实施方式
33.以下结合附图对本技术的示范性实施例做出说明,其中包括本技术实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本技术的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
34.需要说明的是,本技术实施例中所涉及的个人信息数据均已通过用户自愿授权,个人信息的获取、存储、处理和传输等均符合相关法律法规的要求。
35.图1示出了可以应用本技术的用于验证图像的方法或用于验证图像的装置的实施例的示例性系统架构100。
36.如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
37.用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103可以是用户终端设备,其上可以安装有各种客户端应用,例如图像识别类应用、视频识别类应用、播放类应用、搜索类应用、金融类应用等。
38.终端设备101、102、103可以是具有显示屏并且支持接收服务器消息的各种电子设备,包括但不限于智能手机、平板电脑、电子书阅读器、电子播放器、膝上型便携计算机和台式计算机等等。
39.终端设备101、102、103可以是硬件,也可以是软件。当终端设备101、102、103为硬件时,可以是各种电子设备,当终端设备101、102、103为软件时,可以安装在上述所列举的电子设备中。其可以实现成多个软件或软件模块(例如用来提供分布式服务的多个软件模块),也可以实现成单个软件或软件模块。在此不做具体限定。
40.服务器105可以通过终端设备101、102、103获取待验证图像,并采用多个目标局部特征识别模型分别识别待验证图像的多个局部区域的第一局部特征,以及获取基准图像,并采用多个目标局部特征识别模型分别识别基准图像的多个局部区域的第二局部特征,针对多个目标局部特征中的每一个局部特征识别模型,获取采用该局部特征识别模型所确定的第一局部特征、与采用该局部特征识别模型确定的第二局部特征之间的特征相似度,之后,根据获取到的多个特征相似度,确定待验证图像是否通过验证。
41.需要说明的是,本公开的实施例所提供的业务处理方法可以由终端设备101、102、103执行、也可以由服务器105执行,相应地,业务处理装置可以设置于终端设备101、102、103中、也可以设置于服务器105中。
42.应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。
43.继续参考图2,示出了根据本公开的用于验证图像的方法的一个实施例的流程200,包括以下步骤:
44.步骤201,获取待验证图像,并采用多个目标局部特征识别模型分别识别待验证图像的多个局部区域的第一局部特征。
45.在本实施例中,用于验证图像的方法的执行主体(例如图1所示的服务器105)可以获取待验证图像,并采用多个目标局部特征识别模型分别识别该待验证图像的多个局部区域的第一局部特征。即,获取多个目标局部特征识别模型,多个目标局部特征识别模型中的每一个目标局部特征识别模型用于识别待验证图像的不同局部区域,以得到不同局部区域中每一个局部局域的第一局部特征。其中,待验证图像可以是人脸图像,可以是包含任何目标对象(如动物、植物、风景、图纸、各种物品等)的图像,目标局部特征识别模型可以是基于互联网、本地存储或者云存储获得的训练完成的深度学习模型、线性回归模型等。
46.步骤202,获取基准图像,并采用多个目标局部特征识别模型分别识别基准图像的多个局部区域的第二局部特征。
47.在本实施例中,可以获取基准图像,并采用多个目标局部特征识别模型分别识别该基准图像的多个局部区域的第二局部特征。即,获取多个目标局部特征识别模型,多个目标局部特征识别模型中的每一个目标局部特征识别模型用于识别基准图像的不同局部区域,以得到不同局部区域中每一个局部局域的第二局部特征。其中,基准图像是待验证图像比对的基准,例如,若待验证图像为用于验证当前用户是否具有登陆某账户的权限、操作某账户的权限的人脸图像,基准图像可以是该某账户在注册时所使用的注册人脸图像。
48.步骤203,针对多个目标局部特征识别模型中的每一个目标局部特征识别模型,获取采用该目标局部特征识别模型确定的第一局部特征、与采用该目标局部特征识别模型确定的第二局部特征之间的特征相似度。
49.在本实施例中,可以针对多个目标局部特征识别模型中的每一个目标局部特征识别模型,获取采用该目标局部特征识别模型确定的第一局部特征、与采用该目标局部特征识别模型确定的第二局部特征,并计算基于该目标局部特征识别模型得到的第一局部特征与第二局部特征之间的特征相似度。可以理解,基于多个目标局部特征识别模型可以获取到多组第一局部特征与第二局部特征,并可以计算得到多个特征相似度。
50.步骤204,根据获取的多个特征相似度,确定待验证图像是否通过验证。
51.在实施例中,可以根据获取的多个特征相似度,确定待验证图像是否通过验证。具体地,可以基于全部的特征相似度的平均值是否超过预设阈值判断待验证图像是否通过验证,可以基于全部的特征相似度的中值是否超过预设阈值判断待验证图像是否通过验证,也可以基于全部的特征相似度的其他统计特征判断待验证图像是否通过验证。
52.本实施例提供的用于验证图像的方法,获取待验证图像,并采用多个目标局部特征识别模型分别识别待验证图像的多个局部区域的第一局部特征;获取基准图像,并采用多个目标局部特征识别模型分别识别基准图像的多个局部区域的第二局部特征;针对多个目标局部特征识别模型中的每一个目标局部特征识别模型,获取采用目标局部特征识别模型识别出的第一局部特征、与采用目标局部特征识别模型识别出的第二局部特征之间的特
征相似度;根据获取的多个特征相似度,确定待验证图像是否通过验证,可以提高系统对对抗样本的防御性能。另外,该方法是基于局部区域的特征相似度验证图像,并不需要对样本数据进行预处理,避免对干净样本(无噪声样本)与对抗样本(加噪样本)一并进行了预处理,导致的网络对无噪声样本的检测性能差的问题。以及该方法并非基于采用对抗训练方法获得的网络验证图像,可以避免采用对抗训练方法获得的网络在检测无噪声样本时性能差的问题。
53.继续参考图3,示出了根据本公开的用于验证图像的方法的另一个实施例的流程300,包括以下步骤:
54.步骤301,获取待验证人脸图像,并将待验证人脸图像划分为不同的人脸区域。
55.在本实施例中,用于验证图像的方法的执行主体(例如图1所示的服务器105)可以获取待验证人脸图像,并将该待验证人脸图像划分为不同的人脸区域,如,额头区域、眼部区域、脸部两颊区域,嘴部区域等等。可以采用预先训练好的面部区域划分模型划分人脸区域,也可以基于预置的人脸各个区域的比例数据或者区域位置信息划分人脸区域。
56.步骤302,针对待验证人脸图像中的每一个人脸区域,采用用于识别该人脸区域的特征的目标局部特征识别模型识别该人脸区域的第一局部特征。
57.在本实施例中,针对待验证人脸图像中的每一个人脸区域,采用用于识别该人脸区域的特征的目标局部特征识别模型识别该人脸区域的第一局部特征。例如,针对待验证人脸图像中的眼部区域,采用用于识别眼部区域的特征的目标局部特征识别模型识别该待验证人脸图像的眼部区域图像,并获得该待验证人脸图像的眼部区域的特征,基于待验证人脸图像获得的特征可以称之为第一局部特征。
58.步骤303,获取基准人脸图像,并将基准人脸图像划分为不同的人脸区域。
59.在本实施例中,可以获取基准人脸图像,并将该基准人脸图像划分为不同的人脸区域,如,额头区域、眼部区域、脸部两颊区域,嘴部区域等等。可以采用预先训练好的面部区域划分模型划分人脸区域,也可以基于预置的人脸各个区域的比例数据或者区域位置信息划分人脸区域。
60.步骤304,针对基准人脸图像中的每一个人脸区域,采用用于识别该人脸区域的特征的目标局部特征识别模型识别该人脸区域的第二局部特征。
61.在本实施例中,针对基准人脸图像中的每一个人脸区域,采用用于识别该人脸区域的特征的目标局部特征识别模型识别该人脸区域的第二局部特征。例如,针对基准人脸图像中的眼部区域,采用用于识别眼部区域的特征的目标局部特征识别模型识别该基准人脸图像的眼部区域图像,并获得该基准人脸图像的眼部区域的特征,基于基准人脸图像获得的特征可以称之为第二局部特征。
62.步骤305,针对多个目标局部特征识别模型中的每一个目标局部特征识别模型,获取采用目标局部特征识别模型识别出的第一局部特征、与采用目标局部特征识别模型识别出的第二局部特征之间的特征相似度。
63.步骤306,根据获取的多个特征相似度,确定待验证图像是否通过验证。
64.本实施例中对步骤305、步骤306的描述与步骤203、步骤204的描述一致,此处不再赘述。
65.本实施例提供的用于验证图像的方法,相比于图2描述的实施例,所验证的图像为
人脸图像,在验证人脸图像时,可以将人脸图像基于人脸区域划分为不同的局部区域,基于待验证人脸图像的各个人脸区域与基准人脸图像的各个人脸区域之间特征的特征相似度,验证待验证人脸图像。
66.由于对抗样本与原始图片相比,像素值已被改变,且对抗样本中所添加的扰动往往不是作用于单个像素,而是在不同位置的像素之间存在一定的连续性,且不同位置的像素之间的扰动值存在依赖关系。利用目标局部特征识别模型可以破坏对抗扰动的这种连续性和依赖性,使对抗攻击失效,同时这种方法对人脸识别系统的真人通过率的影响较小,不影响网络在干净样本上的识别/验证性能。
67.在上述结合图2和图3描述的实施例的一些可选的实现方式中,根据获取的多个特征相似度,确定待验证图像是否通过验证,包括:响应于确定多个特征相似度中,存在至少一个特征相似度满足第一相似度阈值,确定待验证图像通过验证。
68.在本实施例中,在根据获取的多个特征相似度确定待验证图像是否通过验证时,可以在确定多个特征相似度中,若存在任意特征相似度满足预设的第一相似度阈值,则确定待验证图像通过验证,以提高验证图像的效率。
69.在上述结合图2和图3描述的实施例的一些可选的实现方式中,根据获取的多个特征相似度,确定待验证图像是否通过验证,包括:响应于确定多个特征相似度中的每一个特征相似度均满足第二相似度阈值,确定待验证图像通过验证。
70.在本实施例中,在根据获取的多个特征相似度确定待验证图像是否通过验证时,若确定多个特征相似度中的每一个特征相似度均满足预设的第二相似度阈值,则确定待验证图像通过验证,以提高验证图像的准确性。
71.继续参考图4,示出了根据本公开的用于验证图像的方法的一个实施例的流程400,包括以下步骤:
72.步骤401,获取待验证图像,并采用训练好的特征识别模型识别待验证图像的第一全局特征。
73.在本实施例中,用于验证图像的方法的执行主体(例如图1所示的服务器105)可以获取待验证图像,并采用训练好的特征识别模型识别待验证图像的第一全局特征。其中,该训练好的特征识别模型基于图像的全局/全部的图像区域,即未经区域划分的图像进行特征识别,以获得图像的全局特征。全局特征是相对于局部特征而言的特征。为便于区分,可以将基于待验证图像识别出的全局特征称为第一全局特征。
74.步骤402,获取基准图像,并采用训练好的特征识别模型识别基准图像的第二全局特征。
75.在本实施例中,可以获取基准图像,并采用训练好的特征识别模型识别基准图像的第二全局特征。为便于区分,可以将基于基准图像识别出的全局特征称为第二全局特征。
76.步骤4031,响应于确定第一全局特征与第二全局特征之间的相似度满足第三相似度阈值,采用图2或图3描述的实施例中的方法验证待验证图像。
77.在本实施例中,若确定第一全局特征与第二全局特征之间的相似的满足预设的第三相似度阈值,则可以进一步采用图2或图3描述的实施例中的方法,将待验证图像与基准图像进行区域划分,以基于区域划分后的各个区域的区域特征之间的相似度再次进行验证,提高验证待验证图像的准确性。
78.步骤4032,响应于确定第一全局特征与第二全局特征之间的相似度不满足第三相似度阈值,确定待验证图像未通过验证。
79.在本实施例中,若确定第一全局特征与第二全局特征之间的相似度不满足预设的第三相似度阈值,则可以确定待验证图像与基准图像不相似,确定待验证图像未通过验证。
80.本实施例提供的用于验证图像的方法,相比于图2或图3描述的实施例中的方法,在基于图像的全局特征比较待验证图像与基准图像的相似度,并确定待验证图像与基准图像的全局特征相似之后,才进一步基于图2或图3描述的实施例中的方法,基于图像的局部特征比较待验证图像与基准图像的相似度,可以使基于图像的局部特征比较待验证图像与基准图像的相似度仅用于已经通过全局特征验证的待验证图像,而非全部的待验证图像,以在提高验证图像的准确性的同时,提高验证图像的效率、以及避免大量局部特征的计算和存储操作浪费服务器资源的问题。
81.在一些应用场景中,如图5所示,用于验证图像的方法可以应用于人脸识别系统,该人脸识别系统可以获取用户输入的待验证人脸图像(待验证图像),并采用全局特征识别模型提取该待验证人脸图像的全局特征。
82.人脸识别系统基于本地/云端存储获取用户已注册的注册人脸图像(基准图像),获取并采用全局特征识别模型提取该注册人脸图像的全局特征。
83.将待验证人脸图像的全局特征与注册人脸图像的全局特征进行比较,若确定二者不相似,则确定待验证人脸图像未通过验证;若确定二者相似,则采用图6所示的方法进一步对待验证人脸图像进行验证。
84.在图6所示的用于人脸图像的方法中,将待验证人脸图像划分为不同的人脸区域,针对每一个人脸区域,采用用于识别该人脸区域的特征的目标局部特征识别模型识别该人脸区域的第一局部特征。
85.将注册人脸图像划分为不同的人脸区域,针对每一个人脸区域,采用用于识别该人脸区域的特征的目标局部特征识别模型识别该人脸区域的第二局部特征。(图6中的局部模型1至局部模型n即为用于识别各个局部区域的特征的n个目标局部特征识别模型)
86.将基于同一个目标局部特征识别模型所识别出的第一局部特征与第二局部特征进行相似度比较,并获得相似度序列[s1,s2,
…
,sn],序列中的每一个相似度si(1≤i≤n)代表:目标局部特征识别模型从待验证人脸图像中某个人脸区域提取的局部特征、与该目标局部特征识别模型从注册人脸图像中该某个人脸区域提取的局部特征之间的相似度比较结果。
[0087]
最后,根据全部的比较结果,确定待验证图像是否通过验证。具体地,若相似度序列[s1,s2,
…
,sn]中任意相似度si的取值满足相似度阈值,则人脸识别系统可以确定待验证人脸图像通过验证,或者待验证人脸图像并非用于攻击人脸识别系统的对抗样本;具体地,若相似度序列[s1,s2,
…
,sn]中全部相似度si的取值均满足相似度阈值,则人脸识别系统可以确定待验证人脸图像通过验证,或者待验证人脸图像并非用于攻击人脸识别系统的对抗样本。
[0088]
继续参考图7,示出了根据本公开的用于训练模型的方法的一个实施例的流程700,包括以下步骤:
[0089]
步骤701,获取至少一条样本数据,样本数据包括样本图像、以及该样本图像中各
个局部区域的局部图像的标签。
[0090]
在本实施例中,用于训练模型的方法的执行主体(例如图1所示的服务器105)可以通过终端设备、云存储或者本地存储等方式获取至少一条样本数据,一条样本数据中可以包括一张样本图像、以及该样本图像中各个局部区域的局部图像的标签。例如,一条样本数据可以包括一张人脸图像,该人脸图像中额头区域的额头图像的尺寸、像素特征等参数,该人脸图像中眼部区域的眼部图像的尺寸,瞳孔间距等参数,该人脸图像中嘴部区域的嘴部图像的尺寸等参数。
[0091]
步骤702,获取用于识别各个局部区域的特征的各个初始局部特征识别模型。
[0092]
在本实施例中,可以获取用于识别样本图像中各个局部区域的特征的各个初始局部特征识别模型,不同的初始局部特征识别模型用于识别样本图像中不同局部区域的特征。各个初始局部特征识别模型可以是任意类型的深度学习模型。
[0093]
步骤703,针对各个区域的局部图像中的每一个局部图像,将该局部图像输入用于识别该局部图像所属局部区域的特征的初始局部特征识别模型,并获得该初始局部特征识别模型输出的局部特征。
[0094]
在本实施例中,针对各个局部区域的局部图像中的每一个局部图像,将该局部图像输入用于识别该局部图像所属局部区域的特征的初始局部特征识别模型中,以获得该初始局部特征识别模型输出的局部特征。例如,针对样本人脸图像中的眼部图像、嘴部图像、脸颊图像,将眼部图像输入用于识别眼部区域的特征的初始局部特征识别模型a中,以获得初始局部特征识别模型a输出的眼部特征,将嘴部图像输入用于识别嘴部区域的特征的初始局部特征识别模型b中,以获得初始局部特征识别模型b输出的嘴部特征,将脸颊图像输入用于识别脸部区域的特征的初始局部特征识别模型c中,以获得初始局部特征识别模型c输出的脸颊特征。
[0095]
步骤704,获取局部图像的标签与局部特征所表征的标签之间的损失。
[0096]
在本实施例中,可以获取局部图像的标签与局部特征所表征的标签之间的损失。例如,针对眼部图像,获取样本数据中眼部图像的标签,以及根据步骤703中初始局部特征模型a所识别出的眼部特征所表征的标签之间的损失,其中,眼部特征所表征的标签可以是描述该眼部特征的尺寸参数(如瞳孔间距)、或者描述该眼部形状的信息(如杏仁眼)。
[0097]
步骤705,根据获取到的多个损失的均值,训练多个初始局部特征识别模型,并获得多个目标局部特征识别模型,其中,目标局部特征识别模型应用于图2、图3或图4描述实施例中的用于验证图像的方法。
[0098]
在本实施例中,由于样本图像中包含属于各个局部区域的局部图像,在采用对应的初始局部特征识别模型分别对每一个局部图像识别出每一个局部图像的局部特征后,并根据每一个局部图像的标签以及每一个局部特征所表征标签计算损失后,可以得到多个损失。
[0099]
可以根据获取到的多个损失的均值,训练多个初始局部特征识别模型。例如,可以采用如下损失函数作为训练多个初始局部特征识别模型的损失函数:
[0100]
[0101]
其中,i代表初始局部特征识别模型的标识,也代表目标局部特征识别模型的标识,以及样本图像中各个区域的局部图像的标识,(1≤i≤n),n代表初始局部特征识别模型的总数量。
[0102]
l代表局部图像xi在经过初始局部特征识别模型i进行特征提取后所提取出的局部特征fi与样本数据中局部图像xi的标签yi之间的损失。
[0103]
是模型参数wi与局部特征fi所形成的角度,模型参数w代表局部特征识别模型中各层网络的参数,拥有不同w的模型对输入图像的特征提取能力不同;w与f之间的角度代表输入图像经过模型提取得到的特征fi与wi所形成的角度,角度越小则表示二者越接近,也表示该图像应该被识别为第i个标签的概率更大。
[0104]
m是预设的角度余量,设置m可以使比拥有更大的角度,可以对模型参数起到约束作用。
[0105]
e是自然对数的底数;s是缩放因子;j代表计数标识,与i的取值范围相同。
[0106]
在采用上述损失函数训练各个初始局部特征识别模型时,以最小化损失函数为训练目标,通过迭代的训练操作逐步优化模型参数w。
[0107]
本实施例提供的用于训练模型的方法,获取至少一条样本数据,样本数据包括样本图像、以及样本图像中各个局部区域的局部图像的标签;获取用于识别各个局部区域的特征的各个初始局部特征识别模型;针对各个区域的局部图像中的每一个局部图像,将局部图像输入用于识别局部图像所属局部区域的特征的初始局部特征识别模型,并获得该初始局部特征识别模型输出的局部特征;获取局部图像的标签与局部特征所表征的标签之间的损失;根据获取到的多个损失的均值,训练多个初始局部特征识别模型,并获得多个目标局部特征识别模型,可以通过对比样本图像中不同局部区域的相似性判断输入图片是否为对抗样本。
[0108]
由于对抗样本与原始图片相比,像素值已被改变,且对抗样本中所添加的扰动往往不是作用于单个像素,而是在不同位置的像素之间存在一定的连续性,且不同位置之间的扰动值存在依赖关系。利用训练完成的目标局部特征识别模型可以破坏对抗扰动的这种连续性和依赖性,识别出对抗样本图像,使对抗攻击失效。同时,该方法相比于对模型进行对抗训练以对对抗样本进行防御的方法,可以避免对抗训练后的模型造成过拟合,造成影响对干净样本的识别性能的问题。该方法相比于对输入数据进行预处理后(如图像压缩)再输入模型进行样本图像检测以对对抗样本进行防御的方法,可以避免对无差别的对干净样本也进行了预处理,造成影响模型对干净样本的识别性能的问题。
[0109]
进一步参考图8,作为对上述各图所示方法的实现,本公开提供了一种用于验证图像的装置的一个实施例,该装置实施例与图2和图3所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
[0110]
如图8所示,本实施例的用于验证图像的装置,包括:第一识别单元801、第二识别单元802、匹配单元803、验证单元804。其中,第一识别单元,被配置为获取待验证图像,并采用多个目标局部特征识别模型分别识别待验证图像的多个局部区域的第一局部特征;第二识别单元,被配置为获取基准图像,并采用多个目标局部特征识别模型分别识别基准图像的多个局部区域的第二局部特征;匹配单元,被配置为针对多个目标局部特征识别模型中
的每一个目标局部特征识别模型,获取采用目标局部特征识别模型识别出的第一局部特征、与采用目标局部特征识别模型识别出的第二局部特征之间的特征相似度;验证单元,被配置为根据获取的多个特征相似度,确定待验证图像是否通过验证。
[0111]
在一些实施例中,第一识别单元,包括:第一划分模块,被配置为获取待验证人脸图像,并将待验证人脸图像划分为不同的人脸区域;第一识别模块,被配置为针对待验证人脸图像中的每一个人脸区域,采用用于识别人脸区域的特征的目标局部特征识别模型识别该人脸区域的第一局部特征;第二识别单元,包括:第二划分模块,被配置为获取基准人脸图像,并将基准人脸图像划分为不同的人脸区域;第二识别模块,被配置为针对基准人脸图像中的每一个人脸区域,采用用于识别人脸区域的特征的目标局部特征识别模型识别该人脸区域的第二局部特征。
[0112]
在一些实施例中,验证单元,包括:第一验证模块,被配置为响应于确定多个特征相似度中,存在至少一个特征相似度满足第一相似度阈值,确定待验证图像通过验证。
[0113]
在一些实施例中,验证单元,包括:第二验证模块,被配置为响应于确定多个特征相似度中的每一个特征相似度均满足第二相似度阈值,确定待验证图像通过验证。
[0114]
上述装置800中的各单元与参考图2和图3描述的方法中的步骤相对应。由此上文针对用于验证图像的方法描述的操作、特征及所能达到的技术效果同样适用于装置800及其中包含的单元,在此不再赘述。
[0115]
进一步参考图9,作为对上述各图所示方法的实现,本公开提供了一种用于验证图像的装置的一个实施例,该装置实施例与图4所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
[0116]
如图9所示,本实施例的用于验证图像的装置,包括:第三识别单元901、第四识别单元902、第一校验单元9031或者第二校验单元9032。其中,第三识别单元,被配置为获取待验证图像,并采用训练好的特征识别模型识别待验证图像的第一全局特征;第四识别单元,被配置为获取基准图像,并采用训练好的特征识别模型识别基准图像的第二全局特征;第一校验单元,被配置为响应于确定第一全局特征与第二全局特征之间的相似度满足第三相似度阈值,采用图2或图3描述的实施例中的方法验证待验证图像;或者,第二校验单元,被配置为响应于确定第一全局特征与第二全局特征之间的相似度不满足第三相似度阈值,确定待验证图像未通过验证。
[0117]
上述装置900中的各单元与参考图4描述的方法中的步骤相对应。由此上文针对用于验证图像的方法描述的操作、特征及所能达到的技术效果同样适用于装置900及其中包含的单元,在此不再赘述。
[0118]
进一步参考图10,作为对上述各图所示方法的实现,本公开提供了一种用于训练模型的装置的一个实施例,该装置实施例与图7所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
[0119]
如图10所示,本实施例的用于训练模型的装置,包括:第一获取单元1001、第二获取单元1002、预测单元1003、计算单元1004、训练单元1005。其中,第一获取单元,被配置为获取至少一条样本数据,样本数据包括样本图像、以及样本图像中各个局部区域的局部图像的标签;第二获取单元,被配置为获取用于识别各个局部区域的特征的各个初始局部特征识别模型;预测单元,被配置为针对各个区域的局部图像中的每一个局部图像,将局部图
像输入用于识别局部图像所属局部区域的特征的初始局部特征识别模型,并获得该初始局部特征识别模型输出的局部特征;计算单元,被配置为获取局部图像的标签与局部特征所表征的标签之间的损失;训练单元,被配置为根据获取到的多个损失的均值,训练多个初始局部特征识别模型,并获得多个目标局部特征识别模型,其中,目标局部特征识别模型应用于图2、图3或图4描述实施例中的用于验证图像的方法。
[0120]
上述装置1000中的各单元与参考图7描述的方法中的步骤相对应。由此上文针对用于训练模型的方法描述的操作、特征及所能达到的技术效果同样适用于装置1000及其中包含的单元,在此不再赘述。
[0121]
根据本技术的实施例,本技术还提供了一种电子设备和一种可读存储介质。
[0122]
如图11所示,是根据本技术实施例的用于验证图像的方法的电子设备1100的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本技术的实现。
[0123]
如图11所示,该电子设备包括:一个或多个处理器1101、存储器1102,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示gui的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图11中以一个处理器1101为例。
[0124]
存储器1102即为本技术所提供的非瞬时计算机可读存储介质。其中,该存储器存储有可由至少一个处理器执行的指令,以使该至少一个处理器执行本技术所提供的用于验证图像的方法。本技术的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本技术所提供的用于验证图像的方法。
[0125]
存储器1102作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本技术实施例中的用于验证图像的方法对应的程序指令/模块(例如,附图8所示的第一识别单元801、第二识别单元802、匹配单元803、验证单元804)。处理器1101通过运行存储在存储器1102中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的用于验证图像的方法。
[0126]
存储器1102可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据用于提取视频片段的电子设备的使用所创建的数据等。此外,存储器1102可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器1102可选包括相对于处理器1101远程设置的存储器,这些远程存储器可以通过网络连接至用于提取视频片段的电子设备。上述网络的实例包括但不限于互联网、
企业内部网、局域网、移动通信网及其组合。
[0127]
用于验证图像的方法的电子设备还可以包括:输入装置1103、输出装置1104以及总线1105。处理器1101、存储器1102、输入装置1103和输出装置1104可以通过总线1105或者其他方式连接,图11中以通过总线1105连接为例。
[0128]
输入装置1103可接收输入的数字或字符信息,以及产生与用于提取视频片段的电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1104可以包括显示设备、辅助照明装置(例如,led)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(lcd)、发光二极管(led)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
[0129]
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用asic(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
[0130]
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(pld)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
[0131]
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,crt(阴极射线管)或者lcd(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
[0132]
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(lan)、广域网(wan)和互联网。
[0133]
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计
算机程序来产生客户端和服务器的关系。
[0134]
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本技术中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本技术公开的技术方案所期望的结果,本文在此不进行限制。
[0135]
上述具体实施方式,并不构成对本技术保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本技术的精神和原则之内所作的修改、等同替换和改进等,均应包含在本技术保护范围之内。