一种共享储能模式下电动汽车充电系统容量规划方法

文档序号:28272452发布日期:2021-12-31 20:03阅读:102来源:国知局
一种共享储能模式下电动汽车充电系统容量规划方法

1.本发明属于新能源技术领域,具体涉及一种共享储能模式下电动汽车充电系统容量规划方法。


背景技术:

2.随着人们对能源和环境问题的关注度越来越高,电动汽车因其具有清洁环保、高效节能和低噪声等优点受到各国政府的支持和推广。电动汽车的大量投入使用,为提高电力市场能源和资源利用率提供了更广阔的空间。由于电动汽车具有单次行驶距离长,续航里程有限的特点。充电站运营商在规划建设时需要综合考虑优化配置站内充电基础设施,以免影响用户出行体验、造成资源浪费的同时额外增加成本,危及充电站的可靠及经济运行。因此,研究电动汽车充电站容量规划具有重要的理论意义和现实价值。
3.目前解决充电站容量规划问题多数采用启发式算法进行优化求解,但启发式算法存在易陷入局部最优点、进化后期收敛速度慢等缺点。并且在目前的研究中,电动汽车用户之间的容量需求是独立且互不影响。然而大规模电动汽车普及后,保障电动汽车可靠出行除了需要考虑充电设施之外,还应当考虑用户之间的需求购置策略影响,这样可以使得充电站的资源能够得到最大化的利用。特别是在能利用用户未用完的盈余电量实时向市场内其他电动汽车用户出售的共享储能模式下,如何规划充电系统容量才能在优化充电站经济性的同时能够保障用户对充电站的使用需求,是现有技术尚未解决的难点。


技术实现要素:

4.本发明的目的是提供一种共享储能模式下电动汽车充电系统容量规划方法,用于解决现有技术在规划时缺少对用户之间需求购置策略影响的考虑,导致在共享储能模式下,现有规划方法难以实现在优化充电站经济性的同时能够保障用户对充电站的使用需求的技术问题。
5.所述的一种共享储能模式下电动汽车充电系统容量规划方法,包括下列步骤:
6.步骤一、充电站运营商作为主从博弈的领导者先进行决策,其决策问题是确定充电站内充电桩和储能的安装容量,构建充电站年总利润目标函数用于计算其投资建设利润;
7.步骤二、对所述充电站年总利润目标函数添加平衡约束条件,并根据平衡约束条件对所述年总利润目标函数进行计算,获得对应的充电站年总利润,目标是让充电站年总利润最大化;
8.步骤三、电动汽车用户作为主从博弈中的跟随者,其决策问题是基于充电站建设的容量选择购置电池容量,构建电动汽车用户年使用成本函数计算用户的使用成本;
9.步骤四、对所述电动汽车用户年使用成本函数添加平衡约束条件,并根据平衡约束条件对所述电动汽车用户年使用成本函数进行计算,获得对应的用户年使用成本,目标是让用户年使用成本最小化;
10.步骤五、根据步骤二和步骤四构建的函数搭建双层规划模型,对其下层模型构建拉格朗日函数,基于下层模型的kkt条件将下层模型转化为上层模型的约束条件,上层模型的解为下层模型的优化参数,再利用大m法将双层优化模型中的非线性项线性化,从而将双层优化模型转化为单层混合整数线性规划模型,将双层规划模型中上层充电站的目标函数线性化,直接用商业软件求解器求解最优解构成双层规划模型的博弈nash均衡解。
11.优选的,所述步骤一具体包括:
12.s1.1获取充电桩装机功率以及储能系统的装机功率和装机容量,并构建充电站年初始化投资建设成本函数与充电站年运行维护成本函数;
13.s1.2获取每时刻的电费价格以及电动汽车用户的充电功率、每时刻充电站与电网签订的合同电价以及每时刻充电站与电网的合同电量、每时刻用户出售的盈余电量售出价格以及盈余电量售出功率,并构建充电站年收益函数;
14.s1.3根据所述充电站年初始化投资建设成本函数、所述充电站年运行维护成本函数、所述充电站年收益函数构建充电站年总利润目标函数。
15.优选的,所述步骤二具体包括:
16.s2.1根据充电站每时刻的充放电功率和充放电状态构建储能设备充放电功率约束;
17.s2.2根据电动汽车用户在每时刻的电量需求和充电桩的充放电状态构建系统运行约束;
18.s2.3根据充电站每时刻荷电状态以及充放电功率构建储能设备荷电状态约束;
19.s2.4根据充电桩装机功率、储能系统的装机功率和装机容量构建充电站设备容量建设约束;
20.s2.5根据储能设备充放电功率约束、系统运行约束、储能设备荷电状态约束、充电站设备容量建设约束构建对充电站年总利润目标函数的功率平衡约束。
21.优选的,所述步骤三中,获取每时刻电费价格以及电动汽车用户的充电功率并构建电动汽车用户年使用成本函数。
22.优选的,所述步骤四中,根据不同电动汽车用户的电池容量与电动汽车的最大充电功率构建电动汽车用户购置容量约束。
23.优选的,充电站年初始化投资建设成本函数应用如下公式:
[0024][0025]
式中:为充电站年初始化投资建设成本;γ
cp
和γ
ess
为充电桩的资本回收系数以及储能单元资本贴现率;ξ
cp
、ξ
ess_p
和ξ
ess_e
为充电桩的单位投资成本以及储能系统的单位功率成本和单位容量成本,p
cp
、p
ess
和e
ess
为充电桩装机功率以及储能系统的装机功率和装机容量;
[0026]
充电站年运行维护成本函数应用如下公式:
[0027][0028]
式中:为充电站年运行维护成本;c
cp
和c
ess
为充电桩及储能系统的运维成本;
[0029]
充电站年收益函数应用如下公式:
[0030][0031]
式中:i为充电站年收益,t表示各个时刻;r
t
为t时刻的电费价格;为t时刻充电站与电网签订的合同电价;为t时刻用户出售的盈余电量售出价格;为t时刻电动汽车用户的充电功率;为t时刻充电站与电网的合同电量;为t时刻用户出售的盈余电量售出功率;
[0032]
充电站年总利润目标函数应用如下公式:
[0033][0034]
式中:max(f
s
)为充电站年总利润目标。
[0035]
优选的,储能设备充放电功率约束应用如下公式:
[0036][0037]
式中:和为t时刻储能充电站的充放电功率;和为布尔变量,表示t时刻的充电站充放电状态;
[0038]
系统运行约束应用如下公式:
[0039][0040]
式中:i表示不同电动汽车类型的用户,为电动汽车用户i在t时刻的电量需求;η
cp
为充电桩的充电效率,为t时刻电动汽车用户的充电功率;p
cp
为充电桩装机功率,δt为时刻之间的时间间隔;
[0041]
储能设备荷电状态约束应用如下公式:
[0042][0043]
式中:s
t
为t时刻充电站荷电状态,η
+
和η

为充电站的充电效率和放电效率,s(1)为荷电状态的初始值;s(24)为储能电站最后一刻的荷电状态值,e
ess
为储能系统的装机容量;
[0044]
充电站设备容量建设约束应用如下公式:
[0045]
[0046]
式中:p
ess
为储能系统的装机功率;充电桩装机功率,p
ess
为储能系统的装机功率,和为t时刻充电桩装机功率以及储能系统的装机功率和装机容量的最大值;
[0047]
功率平衡约束应用如下公式:
[0048]
p
tgrid
=p
td
+p
tch

p
tdis
[0049]
式中:p
tgrid
为t时刻充电站与电网的合同电量。
[0050]
优选的,电动汽车用户年使用成本函数应用如下公式:
[0051][0052]
式中:表示i类型电动汽车用户在t时段的充电功率,min(f
u
)表示用户年使用成本最小值;
[0053]
优选的,电动汽车用户购置容量约束应用如下公式:
[0054][0055]
式中:为i类型电动汽车用户的电池容量;为i类型电动汽车用户的电池初始电量;为i类型电动汽车的最大充电功率,e
i
表示所有i类型电动汽车用户购置的电池容量总量,n
i
表示i类型电动汽车用户的数量,t表示电动汽车用户的充电使用时间时段。
[0056]
优选的,所述步骤五中将双层优化模型转化为单层混合整数线性规划模型的具体方法包括:将下层电动汽车用户的约束条件线性化,通过kkt条件等价转化,拉格朗日对偶变量为互补松弛对偶变量分别为原下层约束条件的线性规划式对应的kkt最优性条件为如下公式:
[0057][0058][0059][0060][0061]
通过引入布尔变量和大m法将上述公式中的第二行和第三行约束式转化为以下线性不等式公式:
[0062][0063][0064]
式中:η
+
和η

为布尔变量;m是足够大的正数,通过以上转化,双层优化问题被转化
为单层优化问题;
[0065]
将双层规划模型中上层充电站的目标函数线性化,根据线性规划的对偶定理,原问题在最优解处的值和对偶问题的目标函数值相等,由此可得到以下公式:
[0066][0067]
在转化后的kkt最优性条件约束下,充电站的容量规划模型转化为以下混合整数线性规划公式:
[0068][0069]
经过上述变换,混合整数线性规划式所得的最优解{p
cp
,p
ess
,e
ess
和e
i
}构成了本发明新型所提模型的博弈nash均衡解。
[0070]
本发明具有以下优点:1、综合考虑充电站运营商与用户双方利益构建主从博弈的充电站定容模型,优化充电站经济性的同时能够保障用户对充电站的使用需求。充电站运营商作为博弈的领导者根据电动汽车用户的购置容量需求调整建设容量,用户作为跟随者依据充电站的总建设容量来调控自身需求,两者相互影响,直至充电站运营商投资建设利润最大化和电动汽车用户使用成本最小化二者间实现nash均衡,实现在优化充电站经济性的同时能够保障用户对充电站的使用需求。
[0071]
2、提出共享储能模式下社区充电站的容量规划场景,该场景下用户之间的需求策略是相互已知的,并且可以通过充电系统进行共享。由于在构建充电站的容量规划模型时引入共享储能模式下每时刻用户盈余电量售出功率和盈余电量售出价格,因此也能将共享储能模式中盈余电量售出影响在确定最优方案时考虑进去,从而得到在共享储能模式中对充电站运营商和用户而言均有利的最优方案。
[0072]
3、由于本方案在求解最优方案时考虑了客户的购置容量需求,而客户能根据其所用的汽车类型确定不同类型汽车电池的需求,因此本方案在规划时会分析不同类型电动汽车所占比例的影响,让规划建设充电站的充电站运营商能根据电动汽车用户容量的增加或减少对充电站的利润的影响,通过适当调整充电站的容量建设大小,使得基于双方策略的规划方案更加合理。
附图说明
[0073]
图1为应用本发明的电动汽车充电系统的结构示意图。
[0074]
图2为本发明一种共享储能模式下电动汽车充电系统容量规划方法的博弈关系图。
[0075]
附图中的标记为:10、中央控制单元,11、电网调度中心,20、储能系统,21、储能电池,30、交流配网,31、变压器,40、充电站,41、充电桩。
具体实施方式
[0076]
下面对照附图,通过对实施例的描述,对本发明具体实施方式作进一步详细的说
明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和伸入的理解。
[0077]
如图1

2所示,本发明提供一种共享储能模式下电动汽车充电系统容量规划方法,该方法应用于在规划前客户根据自身需求提供购置相应电池容量的情况,并且该种规划方法还能进一步应用于共享储能模式下的电动汽车充电系统。下面以一种共享储能模式下的电动汽车充电系统为例具体说明本方案的一种具体实施例。
[0078]
本方案应用的电动汽车充电系统包括:中央控制单元10、电网调度中心11、储能系统20、储能电池21、交流配网30、变压器31、充电站40和充电桩41。
[0079]
其中,所述中央控制单元10包含电网调度中心11,统一调度用户对充电站40的容量与电量的使用需求。
[0080]
所述储能系统20包含储能电池21,用户将满足其电池容量的对应电量存储在储能系统20的储能电池21中。
[0081]
所述交流配网30包含变压器31,从电网购电提供用户所需求电量。
[0082]
具体来说,应用本方法的共享储能模式下的电动汽车充电系统是储能系统20和充电站40结合建设的产物,其利用包含储能电池21的储能系统20吸收低谷电,并在高峰时期用于支撑快充负荷,通过储能优化能源配置,减少用电成本,有效减少充电站40的负荷峰谷差,提高系统运行效率。充电站40由多个充电桩41和储能电池21组成,储能电池21可以包含多个储能单元,借助终端与外部电网相连接,充电站运营商通过调控储能系统20来最小化成本。
[0083]
应用本方法的共享储能模式下的电动汽车充电系统属于社区充电站,是指充电站运营商在同一配电网区域内的电动汽车用户群间建立的大型储能充电站,运营商对充电站40进行统一运营管理,为多个电动汽车用户提供充电及共享服务。共享服务是指用户使用储能系统20的储能电池21存储满足其装机容量对应的电量。用户在电动汽车满电的情况下,运营商可将储能系统20中用户未用完的盈余电量向实时市场内其他电动汽车用户出售以获得利润,这一过程具有盈余电量的用户也能获得收益。
[0084]
采用上述系统利用储能系统20预先购置与自身汽车的电池容量需要相适应的电量,不仅能在高峰时间利用低谷时间的电量,以较低的价格购买用电,而且只要注意储能系统20的用电情况,保证自身购置的电池容量充足也不必担心电网负担过大或电网其他故障影响电动汽车的充电使用。而该系统由于有预先购置的储能系统20中的电池容量为规划方案提供用户需求方面的参数,因此也就能采用本发明提供的规划方法获得对充电站运营商和用户双方均有利的最优方案。
[0085]
针对上述的电动汽车充电系统,本发明提供了一种共享储能模式下电动汽车充电系统容量规划方法,包括下列步骤:
[0086]
步骤一、充电站运营商作为主从博弈的领导者先进行决策,其决策问题是确定充电站40内充电桩41和储能的安装容量,构建充电站年总利润目标函数用于计算其投资建设利润。
[0087]
该步骤具体包括:
[0088]
s1.1获取充电桩装机功率以及储能系统的装机功率和装机容量,并构建充电站年初始化投资建设成本函数与充电站年运行维护成本函数。
[0089]
充电站年初始化投资建设成本函数应用如下公式:
[0090][0091]
式中:为充电站年初始化投资建设成本;γ
cp
和γ
ess
为充电桩的资本回收系数以及储能单元资本贴现率;ξ
cp
、ξ
ess_p
和ξ
ess_e
为充电桩的单位投资成本以及储能系统的单位功率成本和单位容量成本。p
cp
、p
ess
和e
ess
为充电桩装机功率以及储能系统的装机功率和装机容量。
[0092]
充电站年运行维护成本函数应用如下公式:
[0093][0094]
式中:为充电站年运行维护成本;c
cp
和c
ess
为充电桩及储能系统的运维成本;p
cp
为充电桩装机功率;e
ess
为储能系统的装机容量。
[0095]
s1.2获取每时刻的电费价格以及电动汽车用户的充电功率、每时刻充电站与电网签订的合同电价以及每时刻充电站与电网的合同电量、每时刻用户出售的盈余电量售出价格以及盈余电量售出功率,并构建充电站年收益函数。
[0096]
充电站年收益函数应用如下公式:
[0097][0098]
式中:i为充电站年收益,t表示各个时刻;r
t
为t时刻的电费价格;为t时刻充电站与电网签订的合同电价;为t时刻用户出售的盈余电量售出价格;为t时刻电动汽车用户的充电功率;为t时刻充电站与电网的合同电量;为t时刻用户出售的盈余电量售出功率。在本实施例中设定一天有24个时刻,时刻之间的时间间隔1小时,t时刻充电站与电网的合同电量相当于该时刻依据合同得到的每小时用电功率。
[0099]
需要说明的是,上式中第一行约束式表示充电站40提供的电量必须始终满足用户的容量需求;第二行约束式表示电动汽车的充电容量约束。
[0100]
s1.3根据所述充电站年初始化投资建设成本函数、所述充电站年运行维护成本函数、所述充电站年收益函数构建充电站年总利润目标函数。
[0101]
充电站年总利润目标函数应用如下公式:
[0102][0103]
式中:max(f
s
)为充电站年总利润目标;i为充电站年收益;为充电站年运行维护成本;为充电站年初始化投资建设成本。
[0104]
步骤二、对所述充电站年总利润目标函数添加平衡约束条件,并根据平衡约束条件对所述年总利润目标函数进行计算,获得对应的充电站年总利润,目标是让充电站年总利润最大化。
[0105]
对所述充电站年总利润目标函数添加平衡约束条件包括储能设备充放电功率约束、系统运行约束、建储能设备荷电状态约束和充电站设备容量建设约束。
[0106]
该步骤具体包括:
[0107]
s2.1根据充电站每时刻的充放电功率和充放电状态构建储能设备充放电功率约束。
[0108]
储能设备充放电功率约束应用如下公式:
[0109][0110]
式中:和为t时刻储能充电站的充放电功率;和为布尔变量,表示t时刻的充电站充放电状态。
[0111]
s2.2根据电动汽车用户在每时刻的电量需求和充电桩的充放电状态构建系统运行约束。
[0112]
系统运行约束应用如下公式:
[0113][0114]
式中:为电动汽车用户i在t时刻的电量需求;η
cp
为充电桩的充电效率,为t时刻电动汽车用户的充电功率;p
cp
为充电桩装机功率,δt为时刻之间的时间间隔。
[0115]
需要说明的是,上式中第一行约束式表示充电站40提供的电量必须始终满足用户的容量需求;第二行约束式表示电动汽车的充电容量约束。
[0116]
s2.3根据充电站每时刻荷电状态以及充放电功率构建储能设备荷电状态约束。
[0117]
储能设备荷电状态约束应用如下公式:
[0118][0119]
式中:s
t
为t时刻充电站荷电状态,η
+
和η

为充电站的充电效率和放电效率,和为t时刻储能充电站的充放电功率;δt为时刻之间的时间间隔;s(1)为荷电状态的初始值;s(24)为储能电站最后一刻的荷电状态值,采用s(1)和s(24)表示因为本实施例设定一天有24个时刻,e
ess
为储能系统的装机容量。
[0120]
需要说明的是,第一行约束式表示储能设备荷电状态约束。为保证充电站40稳定运行,使储能系统20的荷电状态具有周期性,储能的始末荷电状态应保持不变。
[0121]
s2.4根据充电桩装机功率、储能系统的装机功率和装机容量构建充电站设备容量建设约束。
[0122]
充电站设备容量建设约束应用如下公式:
[0123][0124]
式中:p
cp
、p
ess
和e
ess
为充电桩装机功率以及储能系统的装机功率和装机容量;和为t时刻充电桩装机功率以及储能系统的装机功率和装机容量的最大值。
[0125]
s2.5根据储能设备充放电功率约束、系统运行约束、储能设备荷电状态约束、充电站设备容量建设约束构建对充电站年总利润目标函数的功率平衡约束。
[0126]
功率平衡约束应用如下公式:
[0127]
p
tgrid
=p
td
+p
tch

p
tdis
[0128]
式中:为t时刻充电站与电网的合同电量;为t时刻电动汽车用户的充电功率;和为t时刻储能充电站的充放电功率。
[0129]
步骤三、电动汽车用户作为主从博弈中的跟随者,其决策问题是基于充电站40建设的容量选择购置电池容量,构建电动汽车用户年使用成本函数计算用户的使用成本。
[0130]
对应下层的电动汽车用户,该步骤获取每时刻电费价格以及电动汽车用户的充电功率并构建电动汽车用户年使用成本函数。
[0131]
电动汽车用户年使用成本函数应用如下公式:
[0132][0133]
式中:i表示不同电动汽车类型的用户,影响电池容量的需求,r
t
为t时刻的电费价格,表示i类型电动汽车用户在t时段的充电功率,min(f
u
)表示用户年使用成本最小值。
[0134]
步骤四、对所述电动汽车用户年使用成本函数添加平衡约束条件,并根据平衡约束条件对所述电动汽车用户年使用成本函数进行计算,获得对应的用户年使用成本,目标是让用户年使用成本最小化。
[0135]
对所述充电站年总利润目标函数添加平衡约束条件包括电动汽车用户购置容量约束。该步骤根据不同电动汽车用户的电池容量与电动汽车的最大充电功率构建电动汽车用户购置容量约束。电动汽车用户购置容量约束应用如下公式:
[0136][0137]
式中:为i类型电动汽车用户的电池容量;为i类型电动汽车用户的电池初始电量;为i类型电动汽车的最大充电功率;表示i类型电动汽车用户在t时段的充电功率,e
i
表示所有i类型电动汽车用户购置的电池容量总量,n
i
表示i类型电动汽车用户的数量,t表示电动汽车用户的充电使用时间时段。
[0138]
需要说明的是,上式中第一行约束式表示电动汽车的充电量应使得电池达到相应
的负荷状态;第二行约束式表示对于电动汽车充放电速度的限制;第三行约束式表示电动汽车在不进行充电时,充电功率为0。
[0139]
上述的步骤一、二与步骤三、四之间不分先后,可以同时进行,当步骤二和步骤四均完成后进行下面的步骤五。
[0140]
步骤五、根据步骤二和步骤四构建的添加平衡约束条件的函数搭建博弈模型,博弈模型为双层规划模型,博弈的主导者和跟随者都有其目标函数和约束条件。上下层主体的决策变量{p
cp
}、{p
ess
}、{e
ess
}和{e
i
}难以直接求解。因此,本方法中对双层规划模型的下层模型构建拉格朗日函数,基于下层模型的kkt条件将下层模型转化为上层模型的约束条件,上层模型的解为下层模型的优化参数,再利用大m法将双层优化模型中的非线性项线性化,从而将双层优化模型转化为单层混合整数线性规划模型,将双层规划模型中上层充电站40的目标函数线性化,直接用商业软件求解器求解最优解构成双层规划模型的博弈nash均衡解。
[0141]
具体而言,该步骤中将下层电动汽车用户的约束条件线性化,通过kkt条件等价转化。拉格朗日对偶变量为互补松弛对偶变量分别为原下层约束条件的线性规划式对应的kkt最优性条件为如下公式:
[0142][0143][0144][0145][0146]
式中:r
t
为t时刻的电费价格,i表示电动汽车类型,t表示时刻,δt为时刻之间的时间间隔;表示i类型电动汽车用户在t时段的充电功率,为i类型电动汽车的最大充电功率。
[0147]
需要说明的是:上式中第一行约束式为拉格朗日最优性条件;第二行和第三行约束式为互补松弛条件,为非线性表达式。本方法通过引入布尔变量和大m法将第二行和第三行约束式转化为以下线性不等式公式:
[0148][0149][0150]
式中:η
+
和η

为布尔变量;m是足够大的正数。拉格朗日对偶变量为为布尔变量;m是足够大的正数。拉格朗日对偶变量为互补松弛对偶变量分别为i表示电动汽车类型,t表示时刻,δt为时刻之间的时间间隔;表示i类型电动汽车用户在t时段的充电功率,为i类型电动汽车的最大充电功率。通过以上转化,双层优化问题被巧妙地转化为单层优化问题。
[0151]
进一步地,由于目标函数中存在着非线性项乘积,将上层充电站40的目标函数线
性化。线性规划的对偶定理表明,原问题在最优解处的值和对偶问题的目标函数值相等。因此,可得到以下公式:
[0152][0153]
式中:拉格朗日对偶变量为互补松弛对偶变量分别为n
i
表示i类型电动汽车用户的数量,为i类型电动汽车用户的电池容量;为i类型电动汽车用户的电池初始电量;i表示电动汽车类型,t表示时刻,δt为时刻之间的时间间隔;为i类型电动汽车的最大充电功率。r
t
为t时刻的电费价格,表示i类型电动汽车用户在t时段的充电功率。
[0154]
进一步地,在kkt条件约束下,充电站40的容量规划模型转化为以下混合整数线性规划公式:
[0155][0156]
式中:充电站年总利润目标max(f
s
),n
i
表示i类型电动汽车用户的数量,拉格朗日对偶变量为互补松弛对偶变量分别为i表示电动汽车类型,t表示时刻,δt为时刻之间的时间间隔;为i类型电动汽车用户的电池容量;为i类型电动汽车用户的电池初始电量;为i类型电动汽车的最大充电功率。为t时刻充电站与电网签订的合同电价;为t时刻的盈余电量售出价格;为t时刻充电站与电网的合同电量;为t时刻的盈余电量售出功率。为充电站年运行维护成本;为充电站年初始化投资建设成本。
[0157]
详细地来说,经过上述变换,混合整数线性规划式所得的最优解{p
cp
,p
ess
,e
ess
和e
i
}(p
cp
为充电桩装机功率,p
ess
储能系统的装机功率,e
ess
为储能系统的装机容量,e
i
表示所有i类型电动汽车用户购置的电池容量总量)构成了本发明新型所提模型的博弈nash均衡解。在本发明的应用场景中,建立的混合整数线性优化模型,可采用matlab与cplex求解器进行求解,由此确定符合纳什平衡的最优方案,在优化充电站40经济性的同时能够保障用户对充电站40的使用需求。
[0158]
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的发明构思和技术方案进行的各种非实质性的改进,或未经改进将本发明构思和技术方案直接应用于其它场合的,均在本发明保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1