1.本发明涉及火电机组汽轮机发电技术领域,具体涉及一种基于大数据分析的汽轮机劣化趋势测量方法及终端机。
背景技术:2.汽轮机通流部分是将蒸汽热能转换为功的核心部件,其完善程度对机组能耗水平有重要影响。在机组设备投产或大修后,随着机组设备的运行,其性能势必会产生下降,高压缸效率降低,这便是高压缸性能的劣化。掌握其劣化规律,以便判断电厂设备管理水平,进行调整与优化,指导电厂节能工作。
3.汽轮机厂家给出的缸效率设计值,通常只涉及到几个工况,而且机组运行工况往往会偏离试验工况,随着高压调阀开度和负荷的变化,缸效率也会同步发生变化,使得缸效率设计值或试验值不能反映机组整个运行过程中通流部分的变化,以此方法难以判定每年具体劣化数值。
4.而现有技术中,使用arma模型预测方法,用历史数据预测得到的预测值与实际值做对比得到劣化数值,以此方法得出的劣化数值与预测模型的精确度有较大关系,难以保证其结果准确性。
5.现有技术中还有利用经验模态分解方法与特征流通面积去计算劣化数值,无法对后期微小劣化算得结果。
技术实现要素:6.本发明提供基于大数据分析的汽轮机劣化趋势测量方法,方法利用历史实际运行数值,通过多算法与统计对历史数据组合性使用,得出更为精准且真实的数值,有利于维持汽轮机设备良好运行与持续性维护。
7.方法包括:
8.步骤1、根据预设的时间段,以预设的时间间隔,从数据库中获取目标设备的相关参数构建各时间段的矩阵f
t
;
9.步骤2、对采集到的各时间段的矩阵f
t
进行数据清洗,剔除不合格数据,获得正常数据集f
zt
;
10.步骤3、进行稳态及非稳态判定,过滤其中非稳态数据得到剩余稳态数据集;
11.步骤4、对稳态数据集通过测点逐条计算高压缸效率,并将算得的缸效率值存入稳态数据集中,合并得到整合数据集f
tb_w
;
12.步骤5、将整合数据集f
tb_w
按照机组负荷和调阀开度进行分割,均匀的划分出i
×
j个区间;
13.步骤6、对各个区间下数据集f分别抽取其下高压缸效率最大最小值,计算其最大值与最小值之间的差值与均值的百分比,作为区间下数据的离散度;
14.步骤7、选取各个区间下离散度mod值最大的前n个区间,将这n个区间内的数据通
过高压缸效率的最大最小值等间距的进行分割出m层,并将处于同一层的数据组合成分层数据集f
tfc
,共m个;
15.步骤8、分别对每一层的数据f
tfc
进行非线性拟合;
16.步骤9、将各个区间内的数据分别代入每一层的非线性拟合模型中,得到其高压缸缸效效预测值,并与实际值做差比较,距离最近的点划分入于该层数据中,并再次将同一层的数据重新组合成分层数据集f
tfc
;
17.步骤10、重复步骤8、9直到分层数据集f
tfc
保持不变;
18.步骤11、对稳定的分层数据集f
tfc
分别再次进行非线性拟合,再对不同层在各个区间下的高压缸效率进行分界阈值划分,得到阈值矩阵l;
19.步骤12、对历年数据集f
t
分别通过步骤10中的阈值矩阵l进行分层划分,分别计算不同层中历年数据的均值,最终统计合适层的均值得出劣化值。
20.本发明还提供一种实现基于大数据分析的汽轮机劣化趋势测量方法的终端机,包括:
21.存储器,用于存储计算机程序及基于大数据分析的汽轮机劣化趋势测量方法;
22.处理器,用于执行所述计算机程序及基于大数据分析的汽轮机劣化趋势测量方法,以实现基于大数据分析的汽轮机劣化趋势测量方法的步骤。
23.从以上技术方案可以看出,本发明具有以下优点:
24.相比较现有技术采用以历史数据做预测方案并与当前数据做差值比较,本发明提供的基于大数据分析的汽轮机劣化趋势测量方法直接历史运行数值,以数据对数据做比较,提升了计算所得劣化数值的真实性与准确性。
25.在机组实际运行中,缸效率会根据各类运行工况发生动态的变化,通过对同机组负荷与调阀开度下的各个高压缸效率进行分层等同于对影响缸效的其他参数进行了模糊工况划分的效果,避免了不同工况下的高压缸效率做比较的劣化分析误区。
26.本发明提供的基于大数据分析的汽轮机劣化趋势测量方法中,在通过选取前n个极差除以均值区间数据进行分层,提高了第一次分层的准确率,避免了样本数较少的区间对分层上的影响,能够建立相对准确的一次非线性拟合模型,有助于之后循环划分拟合各层非线性模型,划分各层模型间缸效分界阈值。
27.本发明提供的基于大数据分析的汽轮机劣化趋势测量方法中,在历史数据上各年份数据在经过稳态非稳态检测后通过划分出的分界阈值进行分层,再对各层、各个区间中的数据统计均值,最终将不同年份在相同层数与区间中的均值做差,剔除缺失数据,按区间样本数统计其均值的均值,可得到相对准确具体劣化数值。
附图说明
28.为了更清楚地说明本发明的技术方案,下面将对描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
29.图1为基于大数据分析的汽轮机劣化趋势测量方法流程图;
30.图2为基于大数据分析的汽轮机劣化趋势测量方法实施例流程图;
31.图3为实例中缸效率历年变化趋势图。
具体实施方式
32.本发明提供的基于大数据分析的汽轮机劣化趋势测量方法中,所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
33.本发明提供的基于大数据分析的汽轮机劣化趋势测量方法中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本发明的各方面。
34.如图1和图2所示,本发明提供的基于大数据分析的汽轮机劣化趋势测量方法包括:
35.s101、根据预设的时间段,以预设的时间间隔,从数据库中获取目标设备的相关参数构建各时间段的矩阵f
t
;
36.其中,
37.构建各时间段的矩阵f
t
包括:分别构建各时间段m1×
n的f
t
矩阵,其中m1为当前年份数据的条数,n为目标设备相关参数测点数,v为个点数值;
[0038][0039]
预设的时间段可以以年,季度,月,周,天等等时间段来设置。预设的时间间隔可以以秒,分,时,天等等时间间隔来设置,具体设置方式根据使用条件来进行设置,具体数据不做限定。
[0040]
作为获取目标设备的相关参数包括:机组负荷、调阀开度、进汽压力、进汽温度、排汽压力以及排汽温度。
[0041]
s102、对采集到的各时间段的矩阵f
t
进行数据清洗,剔除不合格数据,获得正常数据集f
zt
;
[0042]
剔除的不合格数据可以涉及停机、异常、突变等相关的质量不合格数据。
[0043]
也就是说对采集到的各时间段的矩阵f
t
进行数据清洗包括,利用箱线图剔除采集数据中突变、异常、停机的质量不合格数据,得到整合数据集list
zh
。
[0044]
s103、进行稳态及非稳态判定,过滤其中非稳态数据得到剩余稳态数据集;
[0045]
具体来讲,参与稳态识别的参数为机组负荷和调阀开度,两者需同时满足条件判断为实时稳态,具体条件可以根据实际运行需要进行设置,这里不做限定。
[0046]
进一步的讲,
[0047]
步骤3.1、从矩阵f
t
中抽取与机组稳态非稳态判定相关测点n的数据f
tn
;
[0048][0049]
步骤3.2、对数据f
tn
按照时间窗口长度t1进行2阶多项式滤波,得到滤波后的测点n的数据f
tn_l
;
[0050][0051]
步骤3.3、对滤波后数据f
tn_l
按照时间窗口长度t2进行一阶线性拟合,得到时间窗口长度t2内各段数据的斜率表l
g
;
[0052]
步骤3.4、对测点n的原始数据f
tn
按照时间窗口长度t2计算其时间窗口长度内的方差表l
v
;
[0053]
步骤3.5、通过设置合适的斜率与方差阈值分别从l
g
与l
v
中过滤都在阈值内的数据序号,按照序号索引f
t
,得到当年处于稳态时段下的数据f
t_w
。
[0054]
s104、对稳态数据集通过测点逐条计算高压缸效率,并将算得的缸效率值存入稳态数据集中,合并得到整合数据集f
tb_w
;
[0055]
这里,将算得的缸效率值v存入数据集中,合并得到整合数据集f
tb_w
,其中m2为稳态条件下的数据条数(m2≤m1);
[0056][0057]
对采集的数据计算缸效率,并将算得的缸效率放入该条数据中,其中缸效率计算公式为:
[0058]
η=(h0‑
h
k
)
÷
(h0‑
h
s
)
[0059]
上式中,η为缸内效率,h0表示进汽蒸汽焓,h
k
表示排汽焓,h
s
表示由进汽蒸汽熵和排汽压力查得等熵焓。
[0060]
s105、将整合数据集f
tb_w
按照机组负荷和调阀开度进行分割,均匀的划分出i
×
j个区间;
[0061]
步骤s105中,将整合数据集f
tb_w
中的各条数据根据负荷与调阀开度分别划分进各个区间内,构建分割数据集f
a
,其下数据集f分别代表各个区间下的数据集;
[0062][0063]
将整合数据集f
tb_w
按照步骤1中采集的机组负荷和调阀开度进行分割,机组负荷按照a mw一段、调阀开度按照b%一段进行分隔,得到分割数据集。
[0064]
s106、对各个区间下数据集f分别抽取其下高压缸效率最大最小值,计算其最大值与最小值之间的差值与均值的百分比,作为区间下数据的离散度;
[0065]
区间下数据的离散度为;
[0066][0067]
s107、选取各个区间下离散度mod值最大的前n个区间,将这n个区间内的数据通过高压缸效率的最大最小值等间距的进行分割出m层,并将处于同一层的数据组合成分层数据集f
tfc
,共m个;
[0068]
步骤7将离散度最大的n个区间的缸效率均值按照远近进行等距分层,得到分层数据集组合规则如下:
[0069][0070]
上式中,表示在区间i、j中的第m层分层数据集。
[0071]
s108、分别对每一层的数据f
tfc
进行非线性拟合;
[0072]
在步骤8中对每一层分层数据集按照缸效率、调阀开度、机组负荷三个维度,进行非线性回归拟合,得到每层的回归方程、拟合曲面和均方误差mse与r2决定系数。
[0073]
s109、将各个区间内的数据分别代入每一层的非线性拟合模型中,得到其高压缸缸效效预测值,并与实际值做差比较,距离最近的点划分入于该层数据中,并再次将同一层的数据重新组合成分层数据集f
tfc
;
[0074]
s110、重复步骤8、9直到分层数据集f
tfc
保持不变;
[0075]
s111、对稳定的分层数据集f
tfc
分别再次进行非线性拟合,再对不同层在各个区间下的高压缸效率进行分界阈值划分,得到阈值矩阵l;
[0076]
s112、对历年数据集f
t
分别通过步骤10中的阈值矩阵l进行分层划分,分别计算不同层中历年数据的均值,最终统计合适层的均值得出劣化值。
[0077]
本发明提出了一种基于大数据分析的汽轮机劣化趋势测量方法。本发明通过采用大数据分析,从多个维度划分合理且准确汽轮机工况,通过对相同工况下的汽轮机历史数据进行差值比较,最终得到具体劣化数值,对其劣化趋势的观察与测量对于汽轮机的安全性和经济性具有重要意义。
[0078]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0079]
本文通过对南方某电厂的数据进行具体实施来验证本发明的有效性与可靠性,使用从2016年1月1日00:00至2016年12月31日24:00的数据进行其模糊工况对应高压缸效率分界阈值的挖掘,2016年1月1日00:00至2020年12月31日24:00的数据进行汽轮机劣化数值的计算。
[0080]
步骤1、采集的参数包括:机组负荷、高压调阀开度、主蒸汽压力、主蒸汽温度、高压缸排汽压力、高压缸排汽温度,共计21个测点。取数时间间隔为5秒,获取2016
‑
2020共计31536000条数据,各年数据为6307200条,对每年的数据分别建立一个数据集,共建立5个,分别为f
2016
,f
2017
,f
2018
,f
2019
,f
2020
。
[0081][0082]
上式中,t代表2016至2020各个年份,m1为数据行数,m1=6307200,n为测点数,n=21。
[0083]
步骤2、利用箱线图剔除采集数据中突变、异常、停机等质量不合格数据5312600条,再经专业人员筛选后,获得实际运行时正常数据集26223400条数据,其中2016年数据集共存有5171904条,再次保存为f
t
。
[0084][0085]
上式中,t代表2016至2020各个年份,m1为数据行数,m1=5171904,n为测点数,n=21。
[0086]
通过计算各参数数据四分位距iqr、上四分位数prctile75及下四分位数,计算其参数上下限阈值为:
[0087]
thre
upper
=prctile75+3*iqr
[0088]
thre
lower
=prctile25
‑
3*iqr
[0089]
每个参数的数据按照上限阈值thre
upper
下限阈值thre
lower
判断并剔除该参数存在的异常数据。
[0090]
步骤3、以2016年数据的稳态非稳态判定与筛选为例,得到其中稳态时间段内数据集:
[0091]
a.设定机组负荷与调阀开度作为稳态非稳态参考测点,抽取得到这两个参数的数据集f
tn
,;
[0092][0093]
其中f
tn
分别为2016至2020年稳态非稳态判定使用数据集,为例m2为数据行数,以2016年为例,m2=5171904。
[0094]
b.分别对机组负荷与调阀开度分布进行时间窗口长度为5分钟与1分钟的二阶滤波得到新数据集f
tn_l
。
[0095][0096]
c.随后对机组负荷与调阀开度测点滤波后的数据集f
tn_l
分别进行时间窗口长度为20分钟与5分钟一阶线性拟合,将一阶线性拟合后的斜率数据l
g
作为扩维数据存储作为新列存储回步骤2的f
t
中。
[0097][0098]
鉴于取数为5秒一条,故20分钟数据条数为240条,上式中为第m2条数据至第m2‑
240条数据一阶线性拟合后的斜率数据。
[0099]
[0100]
d.机组负荷与调阀开度未经滤波前的原始数据进行时间窗口长度为20分钟与5分钟的方差计算,将方差扩维数据l
v
作为新列存储在上个步骤中的f
t
中。
[0101][0102]
鉴于取数为5秒一条,故20分钟数据条数为240条,上式中为第m2条数据至第m2‑
240条数据方差数据。
[0103][0104]
e.通过分别设置机组负荷与调阀开度斜率阈值都为0.03,机组负荷与调阀开度方差阈值分别为7.6与1.3进行数据过滤,识别出稳态数据段并存储稳态时间段中的数据,最终从2016年数据集f
t
中收集到的稳态数据集f
t_w
有1084672条。
[0105][0106]
其中f
t_w
分别为2016至2020年稳态数据集,m3为数据行数,以2016年为例,m3=1084672。
[0107]
步骤4、对处理后的稳态时间段中的数据逐条计算高压缸效率,对计算得到缸效率值大于100与小于80的数据进行初步的筛选与剔除,得到975333条数据,再从原数据集f
t_w
抽取高压缸效率、机组负荷与调阀开度保存为新数据集f
tp
。
[0108][0109]
其中f
t_w
分别为2016至2020年稳态数据集,m4为数据行数,以2016年为例,m4=975333。
[0110]
步骤5、将数据集f
tp
通过每10负荷1个区间与每1%调阀开度1个区间,将400
‑
1050负荷数据与22
‑
95调阀开度均匀的以此划分进65*73个区间内。
[0111]
步骤6、对65*73个区间下的数据集分别计算高压缸效率的最大值与最小值之间的差值除以其均值作为离散度数值,统计成表。
[0112][0113]
步骤7、根据选取表中mod值大于0.02的数据,筛选得到695个区间内据,共有468623条数据,按照(最大值
‑
最小值)/9,进行等距分为10层,划分分别属于10层数据集下的数据。
[0114]
步骤8、对每层数据分别进行非线性回归拟合,这里采用设机组负荷为x,调阀开度为y,进行3阶扩维,得到新参数x2,xy,y2,x3,x2y,xy2,y3,将原始参数x,y与新参数再带入常数项后,拟合高压缸效率,最终得到各个参数的权重的方案。
[0115]
返回每层的回归方程、拟合曲面和均方误差mse与r2决定系数。拟合效果如下表:
[0116][0117][0118]
步骤9、将步骤5所得共计975333条数据再分别代入每一层的非线性拟合模型中,将各条数据在各层拟合模型中返回的预测值与实际值做差,将偏差最小的那一层作为这条数据的归属层,再次划入该层对应的数据集中。
[0119]
步骤10、重复进行步骤8与步骤9,直到分层数据集中各层的数据不再发生变化。
[0120]
步骤11、最终得到的各层的回归方程、拟合曲面和均方误差mse与r2决定系数。均方误差mse与r2决定系数如下表:
[0121]
层数mser2缸效率均值数据条数第一层0.10050.958783.762621286第二层0.04020.989884.064939721第三层0.03060.991684.265895844第四层0.02130.993584.5884130109第五层0.03600.991584.928995979第六层0.07470.985685.377354854第七层0.10650.958785.708732684第八层0.12180.930885.982616596第九层0.23840.937086.37157478第十层2.11060.897086.88471083
[0122]
再对不同层在各个区间下的高压缸效率进行分界阈值划分,结果如下表:
[0123]
层数阈值第一层至第二层83.9226第二层至第三层84.1844第三层至第四层84.4129第四层至第五层84.7451第五层至第六层85.1836第六层至第七层85.5932第七层至第八层85.8817第八层至第九层86.2477第九层至第十层865281
[0124]
步骤12、将2017年至2020年在经过步骤3与步骤4后得到的数据分别用步骤11得出的各层阈值进行分层,并计算每一层数据均值,统计2016年至2020年结果如下表。
[0125][0126]
由于边界工况中可能存在极端数据,故根据结果仅统计第二至九层均值,并进行差值计算得,自16年至2020年逐年劣化数值为0.3215,0.11525,0.047,0.00725,随时间变化其劣化数值逐渐趋于稳定,对其2016年至2020年第二至九层均值作图,结果如图3。
[0127]
鉴于该电厂机组于2015年投产,根据劣化数值各层计算结果综合显示汽轮机的劣化是处于逐渐降低并稳定的过程,投入运行时间越短,劣化越明显,在投入运行的第4
‑
5年,劣化逐渐可忽略不计,根据现有数据即可建立完整汽轮机劣化模型。
[0128]
本发明还提供一种实现基于大数据分析的汽轮机劣化趋势测量方法的终端机,包括:存储器,用于存储计算机程序及基于大数据分析的汽轮机劣化趋势测量方法;处理器,用于执行所述计算机程序及基于大数据分析的汽轮机劣化趋势测量方法,以实现基于大数据分析的汽轮机劣化趋势测量方法的步骤。
[0129]
终端机可以以各种形式来实施。例如,本发明实施例中描述的终端可以包括诸如笔记本电脑、个人数字助理(pda,personal digital assistant)、平板电脑(pad)等等的移动终端以及诸如数字tv、台式计算机等等的固定终端。
[0130]
实现基于大数据分析的汽轮机劣化趋势测量方法的终端机是结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
[0131]
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。