一种金属模具制造加工岛的加工工序选择方法与流程

文档序号:35712286发布日期:2023-10-12 14:20阅读:52来源:国知局
一种金属模具制造加工岛的加工工序选择方法与流程

本发明涉及机械加工,尤其涉及一种金属模具制造加工岛的加工 工序选择方法。


背景技术:

1、模具行业制作一个模具产品的流程包括:设计、加工两个大的阶段。其中 加工包括:数控类加工(nc、edm、wedm等)、普通加工(车、铣、磨、抛等)。模 具作为装备制造业的基础,被称为“工业之母”,在汽车、能源、机械等领域 得到广泛应用。在电子、汽车、电视、电器、仪表、仪器、家电和通信等产品 中,60%-80%的零件都是依靠模具成型。用模具生产制件所具备的高精度、高 复杂度、高一致性、高生产率和低耗能,是其他加工制造方法不能比拟的,模 具产业也是制造业的"效益放大器",据统计资料显示,模具可带动其相关产 业的比例大约是1:100,即模具发展1亿元,可带动相关产业100亿元。中国模具 产业近十年来以年均15%的速度增长,是国内gdp增值速度的两倍。目前,我 国模具产业产业规模和技术水平有长足发展,模具产值已经位居世界第一位。

2、智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设 计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、 自执行、自适应等功能的新型生产方式。智能制造作为国家战略已经受到全球 各国的关注。目前基于模具产品的智能制造方式是设置自动机械臂方式结合数 控铣床cnc和火花机edm等设备共同形成加工岛。

3、模具各部件的加工工艺实际是优选模具加工的最小工作任务,选取用料少、 耗能少、碳排放少的加工路线。但当前大多数机械加工、模具企业都对加工工 艺采用传统人工评估法进行工艺工时的估算。由于产品、设备、部件、材料、 作业标准不一,传统方法评估效率较低、主观随意性大、系统性的偏差和偶然 性的误差普遍存在,加工路线的选取多数是凭经验选择。不准确的工艺工时及 复杂度评估会极大的影响模加工的生产排产,造成机台、人员负荷分配分配极 不均衡,严重影响加工交期,造成大概率、大面积拖延、影响加工交期、客户 交期,而且耗能较高、污染环境。


技术实现思路

1、本发明的目的在于,提供一种金属模具制造加工岛的加工工序选择方法, 其目的在于克服现有技术的不足,解决模具行业加工阶段各工艺路线选取时的 工时难评估、评估偏差较大的问题,并减少耗能,降低碳排放。

2、为了实现上述目的,本发明其中一实施例中提供一种金属模具制造加工岛 的加工工序选择方法包括步骤:

3、建立模具加工工艺库步骤,基于可以实现模具加工的加工工序,建立金属 模具制造加工岛用于实现减材加工的模具加工工艺库;

4、待加工金属模具匹配加工工序步骤,输入待加工金属模具模型,所述模具 加工工艺库利用映射法生成加工岛与待加工金属模具能够实现将待加工金属模 具加工为合格模具产品的匹配加工工序;以及

5、构建多目标优化数学模型步骤,结合资源数据、决策变量及精密金属模具 工艺特征构建约束矩阵,形成多目标优化数学模型;

6、选择最优加工工序步骤,设置预选取的决策变量的权重,采用多目标遗传 算法进行求解,获精密金属模具加工工艺的优化序列。

7、进一步地,所述建立模具加工工艺库步骤包括:

8、输入对应加工岛的加工刀具库信息和适用于机器人加工的标准件的信息;

9、输入金属模具模型及金属模具制造加工岛的加工工序;以及

10、对所述金属模具模型与所述标准件进行匹配分析来获取所有的匹配加工工 序;根据匹配分析结果,构建所述金属模具模型的加工方法,所述加工方法至 少包括加工岛加工所需的加工刀具、调度路径以及加工参数。

11、进一步地,所述标准件的信息包括名称、几何形状、材料、公差中的至少 一种,其中所述几何形状包括点、边、面、曲率中的至少一种;所述加工刀具 库信息包括工具几何参数、材料参数、适用的速度范围中的至少一种。

12、进一步地,所述调度路径为加工过程中金属模具在加工设备之间的加工流 程、加工方式、加工路径;所述对所述金属模具模型与所述标准件进行匹配分 析的信息源自于下面之一:已经用所述加工工具加工过的标准件的经验数据、 来自其他金属模具制造加工岛的数据、操作者输入的信息。

13、进一步地,所述待加工金属模具匹配加工工序步骤包括:

14、获取加工模型以及获取加工岛中的加工刀具库信息和模具加工工艺库信 息;

15、分析加工模型结构,逐一获取加工模型上的每一凹腔结构,获取每一凹腔 结构的深度数据,根据凹腔结构的深度数据,从加工刀具库中选取与之匹配的 刀具;

16、对凹腔结构进行工艺分析,从加工工艺库中匹配相应的加工工艺,由对应 的加工工艺及选出的刀具,获取相应的刀路程序,并存储至存储端;以及

17、获取刀路程序对应的加工刀具路径,将选出的刀具和工刀具路径结合形成 从待加工金属模具模型至加工模型的匹配加工工序。

18、进一步地,将加工刀具库信息中每一加工刀具根据相应的层面的凹腔结构, 匹配其相应的加工刀具路径,进行模拟加工,选取对应的刀具作为该层面实际 使用时的加工刀具对应的匹配加工工序。

19、进一步地,所述构建多目标优化数学模型步骤中,利用工序关系图谱prg 表达工序间的优先关系结合资源数据、决策变量及精密金属模具工艺特征构建 约束矩阵;

20、在工序关系图谱prg中,prg为有向无环图,节点为工序编号,边表示所 连接两节点代表的工序间的优先关系,在prg内工艺节点的关系包括前驱关 系、后继关系和并列关系;

21、所述前驱关系为工序i可以通过任一路径到达工序j,则称工序i为工序j 的前驱工序;所述后继关系为与前驱关系相反,即工序i可以通过任一路径到 达工序j时,称工序j为工序i的后继工序;所述并列关系为若工序i与工序j 既不是前驱关系也非后继关系,则称工序i与工序j为并列工序;

22、基于在prg内工艺节点的三类关系作出prg图,基于prg图生成对应的 工序约束矩阵pcmij。

23、进一步地,基于prg图生成对应的工序约束矩阵pcmij为:

24、

25、其中,pcmij表示工序pi与工序pj之间的优先关系,n为待加工零件的总 工序数,pcmij根据约束关系取得,如下:

26、

27、进一步地,所述选择最优加工工序步骤中,所述决策变量包括加工精度、 耗材量、加工工期、装夹次数、刀具使用数量、加工刀具路径长度、机台的占 用率、机床负载量、总碳排放量、总耗能量中的一种或多种。

28、进一步地,所述选择最优加工工序步骤中,采用多目标遗传算法进行求解 多目标优化数学模型的过程为:结合加工模型上的每一凹腔结构,在加工模型 上划分为多个加工特征单元,确定相应的加工工序,为每个工序选择所需的加 工机床和刀具、确定各工序的进刀方向、各工序的加工顺序、以及各工序的选 择切削参数组合,使得所选择的工艺规划方案在所述决策变量的目标上达到协 调最优。

29、本发明的有益效果在于,提供一种金属模具制造加工岛的加工工序选择方 法,通过建立模具加工工艺库,基于模具加工的先验知识的实例推理方法,判 定精密金属模具制造可能实现的加工工艺;建立加工岛可以实现的减材加工工 艺库,利用映射法智能判定加工岛与待加工金属模具可能实现的工艺匹配路径。 同时将精密金属模具工艺特征构建为不等式约束,以成本、性能、质量和稳定 性中的相应参数作为决策变量,构建多目标优化数学模型;并采用具有自组织、 自适应、自学习和复杂无关性,且不用了解优化问题的全部特征就能完成问题 的求解的多目标遗传算法(multi-objective genetic algorithm,moga)这种典型 非归一化算法进行求解,获取精密金属模具加工工艺的序列优化。解决了模具行业加工阶段各工艺路线选取时的工时难评估、评估偏差较大的问题,并能选 择最有利的加工工序,从而减少耗能,降低碳排放。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1