一种三代压水堆核电站用反应堆控制棒组提升上限的精确计算方法和自动计算系统与流程

文档序号:32052772发布日期:2022-11-04 19:02阅读:428来源:国知局
一种三代压水堆核电站用反应堆控制棒组提升上限的精确计算方法和自动计算系统与流程

1.本发明属于核电技术领域,具体涉及一种三代压水堆核电站用反应堆控制棒组提升上限的精确计算方法和自动计算系统。


背景技术:

2.压水堆核电站控制棒组在反应堆内的运动遵循一定的提升上限和运行下限要求。而不同的燃耗、不同的功率,不同的硼浓度条件下,控制棒组的运行限值管理要求是不一样的。
3.三代压水堆核电站反应堆控制棒组分为轴向功率分布控制棒组(ao棒组,ao:axial operator)、停堆控制棒组(s棒组,s:stop)、温度及功率控制棒组 (m棒组)三类。其中温度及功率控制棒组(m棒组,也称机械棒组,m:mechnics) 又分为m1、m2、ma、mb、mc、md六组子棒组,温度及功率控制棒组(m 棒组)在堆芯运动时,其子棒组之间存在着重叠步数的情况。
4.控制棒组在反应堆堆芯底部至反应堆堆芯顶部之间的区域运动,在反应堆堆芯底部为0步,在反应堆堆芯顶部为264步。控制棒组步长为264步,反应堆堆芯底部和反应堆堆芯顶部的长度除以264,得到控制棒组每步步长。
5.控制棒组的运行下限只随着功率的变化而变化。当前功率用百分比表示,控制棒组的运行下限如下:
6.轴向功率分布控制棒组(ao棒组,axial operator),在0%至50%功率范围内,其运行下限为150步;在50%至100%功率范围内,其运行下限为(150+ (当前功率
×
100-50))步。
7.停堆控制棒组(s棒组,stop),在0%至100%功率范围内,其运行下限为 264步。
8.温度及功率控制棒组(也称机械棒组,m棒组,mechnics),在0%至100%功率范围内,m2子棒组的运行下限为264步;m1子棒组的运行下限为(15+2
×
当前功率
×
100)步;ma、mb、mc、md子棒组的运行下限为0步。
9.因此,控制棒组的运行下限计算是简便的,仅受到功率的影响,不受到其他因素的影响。在核电站的电子系统上能实时显示控制棒组的运行下限。
10.当前核电站控制棒组上限的控制,依据核设计单位(设计院)出具的有关控制棒组提升限值的报告对反应堆控制棒组进行控制。但该报告只显示8个典型燃耗下(单表包含11个典型功率、18个典型总棒位条件)预测控制棒组提升上限对应的最大硼浓度表。分别如下:500mwd/tu(兆瓦天/每吨铀)预测控制棒组提升上限对应的最大硼浓度值表;
11.1000mwd/tu(兆瓦天/每吨铀)预测控制棒组提升上限对应的最大硼浓度值表;
12.2000mwd/tu(兆瓦天/每吨铀)预测控制棒组提升上限对应的最大硼浓度值表;
13.3000mwd/tu(兆瓦天/每吨铀)预测控制棒组提升上限对应的最大硼浓度值表;
14.4000mwd/tu(兆瓦天/每吨铀)预测控制棒组提升上限对应的最大硼浓度值表;
15.5000mwd/tu(兆瓦天/每吨铀)预测控制棒组提升上限对应的最大硼浓度值表;
16.6000mwd/tu(兆瓦天/每吨铀)预测控制棒组提升上限对应的最大硼浓度值表;
17.7000mwd/tu(兆瓦天/每吨铀)预测控制棒组提升上限对应的最大硼浓度值表。
18.这些8个典型燃耗下预测控制棒组提升上限对应的最大硼浓度值表只考虑典型的11个功率、典型的18个总棒位(mpi,mechnics rods position index)条件下的预测控制棒组提升上限对应的最大硼浓度值(rwlpredicted,rwl:rodwithout limit),其单位为硼浓度的单位(ppm:百万分之一)。并没有显示控制棒组提升上限,核电站运行人员要将预测控制棒组提升上限对应的最大硼浓度人工转化为控制棒组提升上限(棒位值),人工计算耗时约0.5小时,且容易发生计算错误,这种情况不便于核电站运行人员对机组的控制。
19.此外,虽然根据核设计单位(设计院)出具的有关控制棒提升限值报告进行的相关预测计算已经接近了实际的反应堆运行情况,但是预测计算和实际反应堆运行情况之间的差异会对控制棒组提升上限产生影响,当前情况,核电站运行人员仅通过核设计单位(设计院)出具的相关报告无法获得实际运行情况下控制棒提升上限。
20.再一方面,目前核电站的相关电子系统上并没有控制棒提升上限的显示功能。
21.综上所述,提供一种可精确计算出任意燃耗、任意功率,任意硼浓度条件下,反应堆控制棒组提升上限,并应用于实际,增加子系统控制棒提升上限的显示功能,成为当前亟待解决的问题。


技术实现要素:

22.针对现有技术存在的问题,本发明的目的在于提供一种三代压水堆核电站用反应堆控制棒组提升上限的精确计算方法和自动计算系统,通过预测值与实际值的修正优化计算过程,无需人工进行相关硼浓度值和棒位值的转化,节省了工作时间,满足核电站运行人员对控制棒组提升上限简便易读的要求,且计算速度快,计算精度高。
23.为达此目的,本发明采用以下技术方案:
24.第一方面,本发明提供了一种三代压水堆核电站用反应堆控制棒组提升上限的精确计算方法,所述精确计算方法包括:
25.(1)通过低功率物理试验结果和核设计文件相关数据的理论计算,得到预测计算和实际反应堆运行情况之间的差异,进而计算出相关最大硼浓度修正值;
26.(2)将核设计单位出具的8个典型燃耗下,预测控制棒组提升上限对应的最大硼浓度表,记为初始表;根据所述初始表,通过插值算法计算,得到1个任意燃耗下,预测控制棒提升上限对应的最大硼浓度表,记为表a;
27.根据所述表a,通过插值法计算,得到1个所述任意燃耗,任意功率下,预测控制棒提升上限对应的最大硼浓度表,记为表b;
28.采用该步骤(1)得到的相关最大硼浓度修正值对所述表b进行修正,得到 1个所述任意燃耗,所述任意功率下,实际控制棒提升上限对应的最大硼浓度表,记为表c;
29.根据所述表c,通过插值法计算,得到得到1个所述任意燃耗、所述任意功率、任意硼浓度下的总棒位表;
30.(3)将步骤(2)所述总棒位表进行分解计算,得到所述任意燃耗、所述任意功率、所述任意硼浓度下,实际控制棒组的提升上限;
31.其中,所述反应堆控制棒组包括:轴向功率分布控制棒组,记为ao棒组;
32.停堆控制棒组,记为s棒组;
33.温度及功率控制棒组,记为m棒组;所述m棒组包括m1、m2、ma、mb、mc、md六组子棒组。
34.以下作为本发明优选的技术方案,但不作为本发明提供的技术方案的限制,通过以下技术方案,可以更好地达到和实现本发明的技术目的和有益效果。
35.作为本发明优选的技术方案,步骤(1)所述低功率物理试验结果包括等温温度系数测量值,记为itc
measured
;等温温度系数测量过程中通过化学取样得到的平均硼浓度,记为cb
measured
;低功率物理试验期间测量得到的硼10丰度,记为m
b10
;等温温度系数测量过程中慢化剂升温过程平均温度和降温过程平均温度的平均值,记为t
mod,measurement

36.本发明中,核电站工作人员在每次换料大修后,重新启动反应堆的过程中,会开展低功率物理试验,此试验为常规试验,这里不再赘述。
37.作为本发明优选的技术方案,步骤(1)所述核设计文件相关数据包括末端硼浓度预测值,记为cb
predicted
;低功率物理试验期间硼10丰度预测值,其默认值为19.9%;等温温度系数预测值,记为itc
predicted

38.作为本发明优选的技术方案,步骤(1)具体的方法包括:
39.通过公式1,计算得到预测和实际的平均硼浓度偏差,记为δcb:
40.δcb=cb
predicted

cb
measured
×
(m
b10
/19.9%)
ꢀꢀꢀꢀꢀ
公式1
41.通过公式2,对δcb进行判断,确定硼浓度偏差修订等温温度系数偏差系数,记为cf
cb

42.当δcb>0,cf
cb
=0.0182pcm/℃/ppm
43.当δcb≤0,cf
cb
=0.0155pcm/℃/ppm
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式2
44.通过公式3,计算得到硼浓度相关等温温度系数偏差,记为δitc
cb

45.δitc
cb
=δcb
×
cf
cb
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式3
46.通过公式4,计算得到慢化剂温度偏差,记为δt
mod

47.δt
mod
=291.7℃-t
mod,measurement
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式4
48.通过公式5,计算得到慢化剂温度偏差修订等温温度系数偏差系数,记为 cf
t mod

49.当δt
mod
>0,cf
t mod
=-0.2111pcm/℃/℃
50.当δt
mod
≤0,cf
t mod
=-0.2409pcm/℃/℃
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式5
51.通过公式6,计算得到慢化剂温度相关等温温度系数偏差,记为δitc
t mod

52.δitc
t mod
=δt
mod
×
cf
t mod
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式6
53.通过公式7,计算得到等温温度系数修订值,记为itc
adjusted

54.itc
adjusted
=itc
measured
+δitc
cb
+δitc
t mod
ꢀꢀꢀꢀꢀ
公式7
55.通过公式8,计算得到等温温度系数偏差,记为δitc
bias

56.δitc
bias
=itc
adjusted-itc
predicted
ꢀꢀꢀꢀꢀꢀꢀꢀ
公式8
57.通过公式9,计算得到等温温度系数偏差修订提升上限对应最大硼浓度系数,记为cf
itc

58.当δitc
bias
>0,cf
itc
=64.60ppm/pcm/℃
59.当δitc
bias
≤0,cf
itc
=55.01ppm/pcm/℃
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式9
60.通过公式10,得到预计计算和实际反应堆运行情况之间的差异,进而计算出相关最大硼浓度修正值:
61.相关最大硼浓度修正值=cf
itc
×△
itc
bias
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式10。
62.作为本发明优选的技术方案,根据所述初始表,通过公式11,得到步骤(2) 所述表a;其中,所述任意燃耗下,预测控制棒组提升上限对应的最大硼浓度值,记为rwl
predicted

63.当所述任意燃耗≤150mwd/tu,rwl
predicted
=150mwd/tu时的预测控制棒组提升上限对应的最大硼浓度值;
64.当150mwd/tu《所述任意燃耗≤500mwd/tu,rwl
predicted
=150mwd/tu和 500mwd/tu燃耗下的预测控制棒组提升上限对应的最大硼浓度值表中,相同功率、相同总棒位下的rwl
predicted
进行线性插值的结果;
65.当500mwd/tu《所述任意燃耗≤1000mwd/tu,rwl
predicted
=500mwd/tu和 1000mwd/tu燃耗下的预测控制棒组提升上限对应的最大硼浓度值表中,相同功率、相同总棒位下的rwl
predicted
进行线性插值的结果;
66.当1000mwd/tu《所述任意燃耗≤2000mwd/tu,rwl
predicted
=1000mwd/tu 和2000mwd/tu燃耗下的预测控制棒组提升上限对应的最大硼浓度值表中,相同功率、相同总棒位下的rwl
predicted
进行线性插值的结果;
67.当2000mwd/tu《所述任意燃耗≤3000mwd/tu,rwl
predicted
=2000mwd/tu 和3000mwd/tu燃耗下的预测控制棒组提升上限对应的最大硼浓度值表中,相同功率、相同总棒位下的rwl
predicted
进行线性插值的结果;
68.当3000mwd/tu《所述任意燃耗≤4000mwd/tu,rwl
predicted
=3000mwd/tu 和4000mwd/tu燃耗下的预测控制棒组提升上限对应的最大硼浓度值表中,相同功率、相同总棒位下的rwl
predicted
进行线性插值的结果;
69.当4000mwd/tu《所述任意燃耗≤5000mwd/tu,rwl
predicted
=4000mwd/tu 和5000mwd/tu燃耗下的预测控制棒组提升上限对应的最大硼浓度值表中,相同功率、相同总棒位下的rwl
predicted
进行线性插值的结果;
70.当5000mwd/tu《所述任意燃耗≤6000mwd/tu,rwl
predicted
=5000mwd/tu 和6000mwd/tu燃耗下的预测控制棒组提升上限对应的最大硼浓度值表中,相同功率、相同总棒位下的rwl
predicted
进行线性插值的结果;
71.当6000mwd/tu《所述任意燃耗≤7000mwd/tu,rwl
predicted
=6000mwd/tu 和7000mwd/tu燃耗下的预测控制棒组提升上限对应的最大硼浓度值表中,相同功率、相同总棒位下的rwl
predicted
进行线性插值的结果;
72.当所述任意燃耗≥7000mwd/tu,rwl
predicted
=7000mwd/tu时的预测控制棒组提升上限对应的最大硼浓度值
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式11;
73.优选地,根据所述表a,通过公式12,得到步骤(2)所述表b;其中,所述任意燃耗,任意功率下,预测控制棒组提升上限对应的最大硼浓度值,记为 rwl
predicted*

74.当0%≤所述任意功率《10%,rwl
predicted*
=0%和10%功率下,所述表a中,相同总棒位下的rwl
predicted
进行线性插值的结果;
75.当10%≤所述任意功率《20%,rwl
predicted*
=10%和20%功率下,所述表a中,相同总棒位下的rwl
predicted
进行线性插值的结果;
76.当20%≤所述任意功率《30%,rwl
predicted*
=20%和30%功率下,所述表a 中,相同总棒位下的rwl
predicted
进行线性插值的结果;
77.当30%≤所述任意功率《40%,rwl
predicted*
=30%和40%功率下,所述表a 中,相同总棒位下的rwl
predicted
进行线性插值的结果;
78.当40%≤所述任意功率《50%,rwl
predicted*
=40%和50%功率下,所述表a 中,相同总棒位下的rwl
predicted
进行线性插值的结果;
79.当50%≤所述任意功率《60%,rwl
predicted*
=50%和60%功率下,所述表a 中,相同总棒位下的rwl
predicted
进行线性插值的结果;
80.当60%≤所述任意功率《70%,rwl
predicted*
=60%和70%功率下,所述表a 中,相同总棒位下的rwl
predicted
进行线性插值的结果;
81.当70%≤所述任意功率《80%,rwl
predicted*
=70%和80%功率下,所述表a中,相同总棒位下的rwl
predicted
进行线性插值的结果;
82.当80%≤所述任意功率《90%,rwl
predicted*
=80%和90%功率下,所述表a 中,相同总棒位下的rwl
predicted
进行线性插值的结果;
83.当90%≤所述任意功率≤100%,rwl
predicted*
=90%和100%功率下,所述表a 中,相同总棒位下的rwl
predicted
进行线性插值的结果
ꢀꢀꢀꢀꢀꢀꢀ
公式12;
84.优选地,采用公式13对步骤(2)所述表b进行修正,得到所述表c:其中,所述任意燃耗,所述任意功率下,实际控制棒组提升上限对应的最大硼浓度值,记为rwl
final

85.rwl
final
=(rwl
predicted*-cf
itc
×
δitc
bias
)
×
(19.9%/m
b10
)
ꢀꢀꢀꢀꢀꢀꢀ
公式13。
86.作为本发明优选的技术方案,步骤(2)所述总棒位表中,总棒位数值取向上/向下整数。
87.作为本发明优选的技术方案,步骤(3)通过公式14进行所述的分解计算;其中,总棒位,记为mpi;总棒位数值区间模块值,记为x_
model

88.当531≤mpi≤768,x_
model
=1;
89.当768《mpi≤780,x_
model
=2;
90.当780《mpi≤949,x_
model
=3;
91.当949《mpi≤1032,x_
model
=4;
92.当1032《mpi≤1130,x_
model
=5;
93.当1130《mpi≤1213,x_
model
=6;
94.当1213《mpi≤1311,x_
model
=7;
95.当1311《mpi≤1394,x_
model
=8;
96.当1394《mpi≤1575,x_
model
=9
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
公式14。
97.作为本发明优选的技术方案,步骤(3)所述分解计算还包括,通过公式 15,确定先导棒组的顺序:
98.当反应堆先导棒组是ma棒组时,先导棒组顺序值sequence为1;
99.当反应堆先导棒组是md棒组时,先导棒组顺序值sequence为2公式15。
100.作为本发明优选的技术方案,根据公式16,计算出所述ao棒组、所述s 棒组以及所述m棒组的提升上限:
101.当x_
model
=1,sequence=2时,ma=0,mb=0,mc=0,md=0,m1=mpi-531,m2=264,
s=264,ao=264;
102.当x_
model
=2,sequence=2时,ma=0,mb=0,mc=0,md=mpi-768, m1=mpi-531,m2=264,s=264,ao=264;
103.当x_
model
=3,sequence=2时,ma=0,mb=0,mc=0,md=mpi-768, m1=264,m2=264,s=264,ao=264;
104.当x_
model
=4,sequence=2时,ma=0,mb=0,mc=mpi-942,md=mpi-768, m1=264,m2=264,s=264,ao=264;
105.当x_
model
=5,sequence=2时,ma=0,mb=0,mc=mpi-942,md=264, m1=264,m2=264,s=264,ao=264;
106.当x_
model
=6,sequence=2时,ma=0,mb=mpi-1123,mc=mpi-942, md=264,m1=264,m2=264,s=264,ao=264;
107.当x_
model
=7,sequence=2时,ma=0,mb=mpi-1123,mc=264,md=264, m1=264,m2=264,s=264,ao=264;
108.当x_
model
=8,sequence=2时,ma=mpi-1304,mb=mpi-1123,mc=264, md=264,m1=264,m2=264,s=264,ao=264;
109.当x_
model
=9,sequence=2时,ma=mpi-1304,mb=264,mc=264,md=264, m1=264,m2=264,s=264,ao=264;
110.当x_
model
=1,sequence=1时,md=0,mc=0,mb=0,ma=0,m1=mpi-531, m2=264,s=264,ao=264;
111.当x_
model
=2,sequence=1时,md=0,mc=0,mb=0,ma=mpi-768, m1=mpi-531,m2=264,s=264,ao=264;
112.当x_
model
=3,sequence=1时,md=0,mc=0,mb=0,ma=mpi-768, m1=264,m2=264,s=264,ao=264;
113.当x_
model
=4,sequence=1时,md=0,mc=0,mb=mpi-942,ma=mpi-768, m1=264,m2=264,s=264,ao=264;
114.当x_
model
=5,sequence=1时,md=0,mc=0,mb=mpi-942,ma=264, m1=264,m2=264,s=264,ao=264;
115.当x_
model
=6,sequence=1时,md=0,mc=mpi-1123,mb=mpi-942, ma=264,m1=264,m2=264,s=264,ao=264;
116.当x_
model
=7,sequence=1时,md=0,mc=mpi-1123,mb=264,ma=264, m1=264,m2=264,s=264,ao=264;
117.当x_
model
=8,sequence=1时,md=mpi-1304,mc=mpi-1123,mb=264, ma=264,m1=264,m2=264,s=264,ao=264;
118.当x_
model
=9,sequence=1时,md=mpi-1304,mc=264,mb=264,ma=264, m1=264,m2=264,s=264,ao=264
ꢀꢀꢀꢀꢀꢀꢀꢀ
公式16。
119.本发明中,插值法均为线性插值。
120.第二方面,本发明提供了一种三代压水堆核电站用反应堆控制棒组提升上限的自动计算系统,所述自动计算系统根据第一方面所述的精确计算方法得到,所述自动计算系统包括核设计数据输入模块、低功率物理试验数据输入模块,实时需求输入模块、计算模块
以及结果显示模块;
121.优选地,所述实时需求输入模块输入的数据包括设定的任意燃耗、任意功率、任意硼浓度、先导棒顺序值以及单次提升δ功率;
122.优选地,所述结果显示模块显示出ma、mb、mc、md以及m1的提升上限。
123.本发明中,为了更加便捷和自动的计算控制棒组提升上限,在精确计算方法的基础上开发了自动计算系统,从而克服了人工计算耗时长(单次计算约1 小时),失误率高等缺点,进一步保障了核电站运行人员对反应堆控制棒组提升上限的准确控制。所述自动计算系统经过反复调试和实际验证,证明了控制棒组提升上限快速计算系统的实用性。
124.其中,单次提升δ功率一般设置为0,当前功率+单次提升δ功率=计算时输入功率。
125.本发明中,根据第一方面所述的精确计算方法,通过计算机编程,即可实现自动计算系统的功能。
126.与现有技术相比,本发明具有以下有益效果:
127.(1)本发明所述精确计算方法考虑和包含了预测计算和实际反应堆运行情况之间的差异对控制棒组提升上限产生的影响,使控制棒提升上限更为精确;
128.(2)本发明所述精确计算方法,能计算在任意燃耗、任意功率、任意硼浓度的条件下的反应堆控制棒组提升上限,计算的范围和精度覆盖了反应堆功率运行的各阶段,计算速度快,准确度高,且无需人工进行相关硼浓度值和棒位值的转化,节省工作时间,满足核电站运行人员对控制棒组提升上限简便易读的要求;
129.(3)本发明所述自动计算系统实现了控制棒提升上限显示功能,对核电站运行人员开展控制棒的操作起到了极好的辅助效果。
附图说明
130.图1是本发明实施例2提供的一种三代压水堆核电站用反应堆控制棒组提升上限自动计算系统的计算流程图。
具体实施方式
131.为更好地说明本发明,便于理解本发明的技术方案,下面对本发明进一步详细说明。但下述的实施例仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明保护范围以权利要求书为准。
132.以下为本发明典型但非限制性实施例:
133.实施例1:
134.本实施例提供了一种三代压水堆核电站用反应堆控制棒组提升上限的精确计算方法,所述精确计算方法包括:
135.根据需求,选取任意燃耗为700mwd/tu,任意硼浓度为1900ppm,任意功率为10%,先导棒组为ma。
136.(1)低功率物理试验结果提供的数据如表1所示。
137.表1
[0138][0139]
核设计文件相关数据如表2所示。
[0140]
表2
[0141]
末端硼浓度预测值cb
predicted
2002低功率物理试验期间硼10丰度预测值19.9%等温温度系数预测值itc
predicted
1.5
[0142]
根据公式1~公式10计算的结果如表3所示。
[0143]
表3
[0144][0145]
(2)首先,根据核设计单位出具8个典型燃耗下(单表包含11个典型功率水平、18个典型总棒位条件)预测控制棒组提升上限对应的最大硼浓度表(即初始表),通过插值算法计算(公式11),得到燃耗700mwd/tu下(包含11 个典型功率水平、18个典型总棒位条件)预测控制棒提升上限对应的最大硼浓度(rwl
predicted
)表,记为表a。
[0146]
表a
[0147]
mpi0%rtp10%rtp20%rtp30%rtp40%8tp50%rtp60%rtp70%rtp80%rtp90%rtp100%rtp15751797.41839.61880.31920.81960.32000.51979.11960.81944.01931.81921.514851801.71843.51884.11923.71962.92003.21981.81961.71945.01931.51920.413941830.31870.51909.11948.11987.62027.12004.71983.61967.21952.01940.613041845.31887.11927.61967.42006.92046.92024.92005.61988.81975.11963.312131836.21877.91918.31957.51997.82037.62016.21996.91980.11966.11955.211231835.41877.81919.11959.91999.92040.62019.82001.01984.21970.21960.810321833.91876.21917.51958.31998.62039.42018.61999.81984.01970.91961.49421844.81887.51928.91969.82010.42051.52029.92010.71995.21982.11972.08981859.21900.91941.81982.22022.32063.22041.52021.92004.81991.41980.48981859.21900.91941.81982.22022.32063.22041.52021.92004.81991.41980.48511880.51921.61962.02002.42042.72083.62061.52041.52023.62009.41998.97801908.31950.31991.42032.22073.42114.62092.82073.52057.42043.92033.77681910.31952.71993.82035.02076.22117.12095.92076.32060.22048.02038.57411909.01951.41982.72033.82074.52115.62094.32074.52058.22044.82035.57061911.21953.41994.82035.52076.12116.92094.52075.42058.02043.32032.9
6561923.51965.12005.12044.82084.42123.52100.92079.42061.32044.32032.16061955.51995.52034.52072.32111.92151.12126.92104.82086.02069.12055.65681989.52028.82068.12107.22146.62186.62162.82140.52120.72104.62092.85312012.42054.32095.62136.42177.522191.021965.02176.52157.92144.72134.2
[0148]
其中,mpi代表总棒位,rtp代表功率。
[0149]
根据所述表a,通过插值法计算(公式12),得到燃耗700mwd/tu,功率10%条件下(包含11个典型功率水平、18个典型总棒位条件)预测控制棒提升上限对应的最大硼浓度(rwl
predicted*
)表,记为表b。
[0150]
表b
[0151][0152][0153]
采用步骤(1)得到的相关最大硼浓度修正值对所述表b进行修正(公式 13),得到燃耗700mwd/tu,功率10%条件下(包含18个典型总棒位条件),实际控制棒提升上限对应的最大硼浓度表,记为表c;
[0154]
rwl
final
=(rwl
predicted*-cf
itc
×
δitc
bias
)
×
(19.9%/m
b10
)
ꢀꢀꢀꢀꢀꢀꢀ
公式13
[0155]
表c
[0156]
mpi实际最大硼浓度/ppm15751853.6714851857.5713941884.7413041901.4312131892.1411231892.0610321890.479421901.83
8981915.268511936.087801964.997681967.387411966.097061968.106561979.846062010.355682043.865312069.47
[0157]
根据所述表c,通过插值法计算,得到得到燃耗700mwd/tu,功率10%,硼浓度1900ppm条件下的总棒位表,记为表d;
[0158]
表d
[0159]
功率/%燃耗/mwd/tu硼浓度/ppmmpi107001900956
[0160]
(3)将步骤(2)所述总棒位表进行分解计算,得到燃耗700mwd/tu,功率10%,硼浓度1900ppm条件下,实际控制棒组的提升上限;
[0161]
根据公式14可知,mpi=956,949《mpi≤1032,x_
model
=4;
[0162]
然后通过公式15,确定先导棒组的顺序,由于先导棒组是ma棒组,判断出先导棒组顺序值sequence为1;
[0163]
将公式16整理为表e,并根据公式16,即可得到最终的实际控制棒组的提升上限;
[0164]
表e
[0165]
[0166][0167]
从表e中,得到最终结果,燃耗700mwd/tu,功率10%,硼浓度1900ppm 先到棒组为ma棒组的条件下,各控制棒组实际的提升上限分别为:
[0168]
md=0,mc=0,mb=mpi-942=14,ma=mpi-768=188,m1=264,m2=264, s=264,ao=264。
[0169]
实施例2:
[0170]
本实施例提供了一种三代压水堆核电站用反应堆控制棒组提升上限的自动计算系统,所述自动计算系统包括:核设计数据输入模块、低功率物理试验数据输入模块,实时需求输入模块、计算模块以及结果显示模块;
[0171]
所述实时需求输入模块输入的数据包括设定的任意燃耗、任意功率、任意硼浓度、先导棒顺序值以及单次提升δ功率;
[0172]
所述结果显示模块显示出ma、mb、mc、md以及m1的提升上限。
[0173]
所述自动计算系统计算流程图如图1所示。
[0174]
通过上述实施例可以看出,本发明所述精确计算方法考虑和包含了预测计算和实际反应堆运行情况之间的差异对控制棒组提升上限产生的影响,使控制棒提升上限更为精确;且能计算在任意燃耗、任意功率、任意硼浓度的条件下的反应堆控制棒组提升上限,计算的范围和精度覆盖了反应堆功率运行的各阶段,计算速度快,准确度高,且无需人工进行相关硼浓度值和棒位值的转化,节省工作时间,满足核电站运行人员对控制棒组提升上限简便易读的要求,对核电站运行人员开展控制棒的操作起到了极好的辅助效果。
[0175]
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明操作的等效替换及辅助操作的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1