1.本技术涉及金融科技的数据处理技术领域,尤其涉及一种风控模型处理方法、引擎、设备及介质。
背景技术:2.在互联网金融行业中,风控通常包含风险评估和风险控制两个方面,其涵义非常广泛,包含对所有可能风险事件的评估和控制,涉及对用户信用风险、人员操作风险、业务操作风险、技术操作风险和外部事件风险等各类风险事件的评估和控制。
3.目前,针对用户信用风险的评估和控制通常采用诸如评分卡模型等风控模型来实现,这些风控模型通常采用人为设置的风控规则进行信用风险评估和控制,风控模型过于依赖人工介入和风控规则,其创建效率较低且无法适配多种风控场景,信用风险的风控效果也有待提高。
技术实现要素:4.本技术实施例提供了一种风控模型处理方法、引擎、设备及介质,用以解决现有技术中风控模型的创建效率较低、适配性较差、风控效果不佳的问题。
5.本技术实施例提供的技术方案如下:一方面,本技术实施例提供了一种风控模型处理方法,应用于风控模型构建系统,该风控模型处理方法包括:响应于针对模型合成界面上显示的不同风控场景的风控子模型执行的选取操作,确定选取操作所选取的不同风控场景的风控子模型;其中,不同风控场景的风控子模型是基于目标用户的多维度信用特征数据对目标用户在不同风控场景下的信用风险进行评估的模型;响应于针对模型合成界面上显示的合成控件执行的触发操作,按照选取操作所选取的不同风控场景的风控子模型之间的层级关系,对选取操作所选取的不同风控场景的风控子模型进行融合得到风控模型;其中,风控模型是基于目标用户在不同风控场景下的信用风险对目标用户的综合信用风险进行评估的模型。
6.在一种可能的实施方式中,响应于针对模型合成界面上显示的不同风控场景的风控子模型执行的选取操作,确定选取操作所选取的不同风控场景的风控子模型之前,还包括:响应于在模型导入界面上显示的模型导入区域中执行的导入操作,确定导入操作所导入的风控子模型;响应于针对模型导入界面上显示的导入控件执行的触发操作,基于导入操作所导入的风控子模型的风控场景,将导入操作所导入的风控子模型保存至设定存储区域;和/或;响应于在模型编辑界面上显示的模型编辑区域中执行的编辑操作,获取编辑操作
所编辑的风控子模型;响应于针对模型编辑界面上显示的保存控件执行的触发操作,基于编辑操作所编辑的风控子模型的风控场景,将编辑操作所编辑的风控子模型保存至设定存储区域。
7.在一种可能的实施方式中,本技术实施例提供的风控模型处理方法还包括:响应于在模型查询界面上显示的模型查询区域中执行的查询操作,从设定存储区域保存的各风控模型和各风控子模型中,查询与查询操作所对应的查询关键字相匹配的目标风控模型,并在模型查询界面上显示的模型显示区域中显示目标风控模型。
8.在一种可能的实施方式中,本技术实施例提供的风控模型处理方法还包括:响应于针对模型训练界面上显示的各风控子模型执行的选择操作,确定选择操作所选取的各风控子模型;响应于针对模型训练界面上显示的训练控件执行的触发操作,基于训练用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,对选取操作所选取的各风控子模型进行训练。
9.在一种可能的实施方式中,本技术实施例提供的风控模型处理方法还包括:响应于针对模型测试界面上显示的各风控模型执行的选择操作,确定选择操作所选取的风控模型;响应于针对模型测试界面上显示的测试控件执行的触发操作,基于测试用户集合中各用户所对应的多维度信用特征样本数据和综合信用风险标注数据,按照选择操作所选取的风控模型的数量,对选择操作所选取的风控模型进行独立测试或批量测试;在模型测试界面的测试显示区域中显示选择操作所选取的风控模型的模型测试结果;和/或;响应于针对模型测试界面上显示的各风控子模型执行的选择操作,确定选择操作所选取的风控子模型;响应于针对模型测试界面上显示的测试控件执行的触发操作,基于测试用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,按照选择操作所选取的风控子模型的数量,对选择操作所选取的风控子模型进行独立测试或批量测试;在模型测试界面的测试显示区域中显示选择操作所选取的风控子模型的模型测试结果。
10.在一种可能的实施方式中,本技术实施例提供的风控模型处理方法还包括:响应于针对格式校验界面上显示的各风控模型执行的选择操作,确定选择操作所选取的各风控模型;响应于针对格式校验界面上显示的校验控件执行的触发操作,基于设定格式校验规则,分别对选择操作所选取的各风控模型进行格式校验,并在格式校验界面上显示的校验显示区域中显示选择操作所选取的各风控模型的格式校验结果;和/或;响应于针对异常检测界面上显示的各风控模型执行的选择操作,确定选择操作所选取的各风控模型;响应于针对异常检测界面上的检测控件执行的触发操作,基于选择操作所选取的各风控模型在测试过程中的运行日志数据,对选择操作所选取的各风控模型进行异常检测,并在异常检测界面上的检测显示区域中显示选择操作所选取的各风控模型的异常检测结果。
11.在一种可能的实施方式中,本技术实施例提供的风控模型处理方法还包括:响应于针对模型审批界面上显示的各风控模型执行的选取操作,确定选择操作所
选取的各风控模型;响应于针对模型审批界面上显示的审批控件执行的触发操作,基于选取操作所选取的各风控模型发起审批流程,确定选取操作所选取的各风控模型的审批流程结束时,在模型审批界面上显示表征选取操作所对应的各风控模型审批结果的消息。
12.另一方面,本技术实施例提供了一种风控模型处理引擎,应用于风控模型构建系统,该风控模型处理引擎包括:子模型选取模块,用于响应于针对模型合成界面上显示的不同风控场景的风控子模型执行的选取操作,确定选取操作所选取的不同风控场景的风控子模型;其中,不同风控场景的风控子模型是基于目标用户的多维度信用特征数据对目标用户在不同风控场景下的信用风险进行评估的模型;子模型融合模块,用于响应于针对模型合成界面上显示的合成控件执行的触发操作,按照选取操作所选取的不同风控场景的风控子模型之间的层级关系,对选取操作所选取的不同风控场景的风控子模型进行融合得到风控模型;其中,风控模型是基于目标用户在不同风控场景下的信用风险对目标用户的综合信用风险进行评估的模型。
13.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎还包括:模型导入模块,用于响应于在模型导入界面上显示的模型导入区域中执行的导入操作,确定导入操作所导入的风控子模型;响应于针对模型导入界面上显示的导入控件执行的触发操作,基于导入操作所导入的风控子模型的风控场景,将导入操作所导入的风控子模型保存至设定存储区域;和/或;模型编辑模块,用于响应于在模型编辑界面上显示的模型编辑区域中执行的编辑操作,获取编辑操作所编辑的风控子模型;响应于针对模型编辑界面上显示的保存控件执行的触发操作,基于编辑操作所编辑的风控子模型的风控场景,将编辑操作所编辑的风控子模型保存至设定存储区域。
14.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎还包括:模型查询模块,用于响应于在模型查询界面上显示的模型查询区域中执行的查询操作,从设定存储区域保存的各风控模型和各风控子模型中,查询与查询操作所对应的查询关键字相匹配的目标风控模型,并在模型查询界面上显示的模型显示区域中显示目标风控模型。
15.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎还包括:模型训练模块,用于响应于针对模型训练界面上显示的各风控子模型执行的选择操作,确定选择操作所选取的各风控子模型;响应于针对模型训练界面上显示的训练控件执行的触发操作,基于训练用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,对选取操作所选取的各风控子模型进行训练。
16.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎还包括:模型测试模块,用于响应于针对模型测试界面上显示的各风控模型执行的选择操作,确定选择操作所选取的风控模型;响应于针对模型测试界面上显示的测试控件执行的触发操作,基于测试用户集合中各用户所对应的多维度信用特征样本数据和综合信用风险标注数据,按照选择操作所选取的风控模型的数量,对选择操作所选取的风控模型进行独立测试或批量测试;在模型测试界面的测试显示区域中显示选择操作所选取的风控模型的
模型测试结果;和/或;响应于针对模型测试界面上显示的各风控子模型执行的选择操作,确定选择操作所选取的风控子模型;响应于针对模型测试界面上显示的测试控件执行的触发操作,基于测试用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,按照选择操作所选取的风控子模型的数量,对选择操作所选取的风控子模型进行独立测试或批量测试;在模型测试界面的测试显示区域中显示选择操作所选取的风控子模型的模型测试结果。
17.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎还包括:格式校验模块,用于响应于针对格式校验界面上显示的各风控模型执行的选择操作,确定选择操作所选取的各风控模型;响应于针对格式校验界面上显示的校验控件执行的触发操作,基于设定格式校验规则,分别对选择操作所选取的各风控模型进行格式校验,并在格式校验界面上显示的校验显示区域中显示选择操作所选取的各风控模型的格式校验结果;和/或;异常检测模块,用于响应于针对异常检测界面上显示的各风控模型执行的选择操作,确定选择操作所选取的各风控模型;响应于针对异常检测界面上的检测控件执行的触发操作,基于选择操作所选取的各风控模型在测试过程中的运行日志数据,对选择操作所选取的各风控模型进行异常检测,并在异常检测界面上的检测显示区域中显示选择操作所选取的各风控模型的异常检测结果。
18.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎还包括:发布审批模块,用于响应于针对模型审批界面上显示的各风控模型执行的选取操作,确定选择操作所选取的各风控模型;响应于针对模型审批界面上显示的审批控件执行的触发操作,基于选取操作所选取的各风控模型发起审批流程,确定选取操作所选取的各风控模型的审批流程结束时,在模型审批界面上显示表征选取操作所对应的各风控模型审批结果的消息。
19.另一方面,本技术实施例提供了一种电子设备,包括:存储器、处理器和存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现本技术实施例提供的风控模型处理方法。
20.另一方面,本技术实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令被处理器执行时实现本技术实施例提供的风控模型处理方法。
21.本技术实施例的有益效果如下:本技术实施例中,通过对不同风控场景的风控子模型进行融合来创建风控模型,可以提高风控模型的创建效率,而且,通过在模型合成界面上选取不同风控场景的风控子模型进行融合,可以实现根据实际风控需求灵活创建不同的风控模型,从而可以提高风控模型的多样性和适配性,此外,通过根据用户的多维度信用特征数据进行信用风险评估,可以提高风控模型的综合信用风险评估的准确度和风控效果。
22.本技术的其它特征和优点将在随后的说明书中阐述,并且,部分地可以从说明书中变得显而易见,或者通过实施本技术而了解。本技术的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中特别指出的结构来实现和获得。
附图说明
23.此处所说明的附图用来提供对本技术的进一步理解,构成本技术的一部分,本技术的示意性实施例及其说明用于解释本技术,并不构成对本技术的不当限定。在附图中:图1为本技术实施例中风控模型处理方法的概况流程示意图;图2a为本技术实施例中风控模型构建系统的登录界面示意图;图2b为本技术实施例中风控模型构建系统的主界面示意图;图2c为本技术实施例中风控模型构建系统的模型导入界面示意图;图2d为本技术实施例中风控模型构建系统的模型编辑界面示意图;图2e为本技术实施例中风控模型构建系统的模型训练界面示意图;图2f为本技术实施例中风控模型构建系统的一模型测试界面示意图;图2g为本技术实施例中风控模型构建系统的模型合成界面示意图;图2h为本技术实施例中风控模型构建系统的另一模型测试界面示意图;图2i为本技术实施例中风控模型构建系统的模型审批界面示意图;图2j为本技术实施例中风控模型构建系统的模型查看界面示意图;图3为本技术实施例中风控模型处理引擎的功能结构示意图;图4为本技术实施例中电子设备的硬件结构示意图。
具体实施方式
24.为了使本技术的目的、技术方案及有益效果更加清楚明白,下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,并不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
25.为便于本领域技术人员更好地理解本技术,下面先对本技术实施例涉及的技术用语进行简单介绍。
26.风控模型构建系统,为用于对风控模型进行创建、训练、测试和部署的交互平台。本技术实施例中,风控模型构建系统的交互形式可以是但不限于是网页、应用软件、轻应用等。
27.风控模型,为基于目标用户在不同风控场景下的信用风险对目标用户的综合信用风险进行评估的模型。本技术实施例中,风控模型可以是但不限于是非线性神经网络模型,例如bp神经网络模型等;风控场景可以包括但不限于信用贷、小微贷、大额贷、小额贷等;综合信用风险可以包括但不限于综合信用得分和/或综合信用等级等。
28.风控子模型,为基于目标用户的多维度信用特征数据对目标用户在某一风控场景下的信用风险进行评估的模型。本技术实施例中,多维度信用特征数据可以包括但不限于基本特征数据、征信特征数据、信用卡特征数据、借贷特征数据、终端特征数据和贷款软件交互特征数据等数据中的一种或多种;信用风险可以包括但不限于信用得分和/或信用等级等。
29.需要说明的是,本技术实施例中提及的“和/或”,描述的是关联对象的关联关系,表示可以存在三种关系,例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b这
三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
30.在介绍了本技术实施例涉及的技术用语后,接下来,对本技术实施例的应用场景和设计思想进行简单介绍。
31.目前,传统的诸如评分卡模型等风控模型通常采用人为设置的风控规则进行信用风险评估和控制,风控模型过于依赖人工介入和风控规则,从而导致风控模型的创建效率较低、信用风险的风控效果较差,而且,基于人为设置的风控规则创建的风控模型通常无法支持多种风控场景,风控模型的适配性较差。
32.为此,本技术实施例中,风控模型构建系统响应于针对模型合成界面上显示的不同风控场景的风控子模型执行的选取操作,确定选取操作所选取的不同风控场景的风控子模型后,响应于针对模型合成界面上显示的合成控件执行的触发操作,按照选取操作所选取的不同风控场景的风控子模型之间的层级关系,对选取操作所选取的不同风控场景的风控子模型进行融合得到风控模型。这样,通过对不同风控场景的风控子模型进行融合来创建风控模型,可以提高风控模型的创建效率,而且,通过在模型合成界面上选取不同风控场景的风控子模型进行融合,可以实现根据实际风控需求灵活创建不同的风控模型,从而可以提高风控模型的多样性和适配性,此外,通过根据用户的多维度信用特征数据进行信用风险评估,可以提高风控模型的综合信用风险评估的准确度和风控效果。
33.在介绍了本技术实施例的应用场景和设计思想之后,下面对本技术实施例提供的技术方案进行详细说明。
34.本技术实施例提供了一种风控模型处理方法,该风控模型处理方法应用于风控模型构建系统,参阅图1所示,本技术实施例提供的风控模型处理方法的概况流程如下:步骤110:响应于针对模型合成界面上显示的不同风控场景的风控子模型执行的选取操作,确定该选取操作所选取的不同风控场景的风控子模型。
35.实际应用中,参阅图2a所示,用户可以通过邮箱、账号、扫码等多种登录方式中的一种登录方式登录风控模型构建系统。
36.参阅图2b所示,用户登录风控模型构建系统进入主界面后,可以通过主界面上显示的导航栏(图2b仅以导航栏位于界面左侧为例)进入模型导入界面,参阅图2c所示,用户进入模型导入界面后,可以在模型导入界面上显示的模型导入区域中执行导入操作,例如将本地保存的风控子模型拖拽至模型导入区域来执行导入操作,又如点击模型导入区域显示的模型选择框并选取jupyterlab中的风控子模型来执行导入操作,此时,风控模型构建系统响应于在模型导入界面上显示的模型导入区域中执行的导入操作,确定该导入操作所导入的风控子模型,之后,用户还可以针对模型导入界面上显示的导入控件执行触发操作,例如通过点击导入控件来执行触发操作,此时,风控模型构建系统响应于针对模型导入界面上显示的导入控件执行的触发操作,基于该导入操作所导入的风控子模型的风控场景,将该导入操作所导入的风控子模型保存至设定存储区域。
37.此外,用户除了可以从本地或jupyterlab中导入风控子模型之外,还可以在风控模型构建系统中编辑风控子模型,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入模型编辑界面,参阅图2d所示,用户进入模型编辑界面后,可以在模型编辑界面上显示的模型编辑区域中执行编辑操作,例如在模型编辑区域中编辑风控子模型的源代码以实现编辑操作,此时,风控模型构建系统响应于在模型编辑界面上显示的模型编辑区域中执行
的编辑操作,获取该编辑操作所编辑的风控子模型,之后,用户编辑完成时,还可以针对模型编辑界面上显示的保存控件执行触发操作,例如通过点击保存控件来执行触发操作,此时,风控模型构建系统响应于针对模型编辑界面上显示的保存控件执行的触发操作,基于该编辑操作所编辑的风控子模型的风控场景,将该编辑操作所编辑的风控子模型保存至设定存储区域。
38.进一步的,本技术实施例中,用户还可以对导入和/或编辑的各风控子模型进行训练,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入模型训练界面,参阅图2e所示,用户进入模型训练界面后,可以针对模型训练界面上显示的各风控子模型执行选择操作,此时,风控模型构建系统响应于针对模型训练界面上显示的各风控子模型执行的选择操作,确定该选择操作所选取的各风控子模型,之后,用户还可以针对模型训练界面上显示的训练控件执行触发操作,例如通过点击训练控件来执行触发操作,此时,风控模型构建系统响应于针对模型训练界面上显示的训练控件执行的触发操作,基于训练用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,对该选取操作所选取的各风控子模型进行训练,在具体实施时,风控模型构建系统针对该选取操作所选取的每一风控子模型,基于训练用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,对该风控子模型迭代执行训练操作,直至确定满足迭代终止条件(例如损失值低于预设阈值、训练次数达到设定阈值等)时,基于最后一次执行训练操作更新的该风控子模型的各模型参数,得到训练后的风控子模型;其中,训练操作包括:从训练用户集合中选取部分用户作为目标用户,将目标用户所对应的多维度信用特征样本数据输入该风控子模型得到该风控子模型输出的目标用户的信用风险预测数据,基于目标用户的信用风险预测数据和信用风险标注数据,利用损失函数(例如交叉熵损失函数等)计算损失值,基于该损失值更新该风控子模型的各模型参数。进一步的,风控模型构建系统针对该选取操作所选取的各风控子模型的训练完成时,还可以在模型训练界面上显示该选取操作所选取的各风控子模型的训练结果。
39.当然,用户对导入和/或编辑的各风控子模型进行训练后,还可以进一步对训练后的各风控子模型进行测试,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入模型测试界面,参阅图2f所示,用户进入模型测试界面后,可以针对模型测试界面中子模型测试子界面上显示的各风控子模型执行选择操作,此时,风控模型构建系统响应于针对模型测试界面上显示的各风控子模型执行的选择操作,确定该选择操作所选取的风控子模型,之后,用户还可以针对模型测试界面上显示的测试控件执行触发操作,例如通过点击测试控件来执行触发操作,此时,风控模型构建系统响应于针对模型测试界面上显示的测试控件执行的触发操作,基于测试用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,按照该选择操作所选取的风控子模型的数量,对该选择操作所选取的风控子模型进行独立测试或批量测试(图2f仅以批量测试为例),在具体实施时,风控模型构建系统可以基于测试用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,采用k折验证算法,按照该选择操作所选取的风控子模型的数量,对该选择操作所选取的风控子模型进行独立测试或批量测试,进一步的,风控模型构建系统对该选择操作所选取的风控子模型的测试完毕后,还可以在模型测试界面的测试显示区域中显示选择操作所选取的风控子模型的模型测试结果。
40.进一步的,本技术实施例中,用户对导入和/或编辑的各风控子模型进行训练和测试后,即可对训练和测试后的各风控子模型进行合成,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入模型合成界面,参阅图2g所示,用户进入模型合成界面后,可以根据实际风控需求对模型合成界面上显示的不同风控场景的风控子模型执行选取操作,此时,风控模型构建系统响应于针对模型合成界面上显示的不同风控场景的风控子模型执行的选取操作,确定该选取操作所选取的不同风控场景的风控子模型,之后,用户可以针对模型合成界面上显示的合成控件执行触发操作,例如通过点击合成控件来执行触发操作,此时,风控模型构建系统执行步骤120。
41.步骤120:响应于针对模型合成界面上显示的合成控件执行的触发操作,按照该选取操作所选取的不同风控场景的风控子模型之间的层级关系,对该选取操作所选取的不同风控场景的风控子模型进行融合得到风控模型。
42.实际应用中,层级关系包括但不限于并列层级关系、前后层级关系等,在具体实施时,风控模型构建系统可以针对该选取操作所选取的不同风控场景的风控子模型中存在并列层级关系的各风控子模型分别设置融合权重,并基于融合权重对存在并列层级关系的各风控子模型进行融合;此外,风控模型构建系统还可以针对该选取操作所选取的不同风控场景的风控子模型中存在前后层级关系的各风控子模型,将在前的风控子模型的输出作为在后的风控子模型的输入,并基于该在前风控子模型的输出为在后风控子模型的输入的关联关系对存在前后层级关系的各风控子模型进行融合,从而可以实现按照该选取操作所选取的不同风控场景的风控子模型之间的层级关系,对该选取操作所选取的不同风控场景的风控子模型的融合,进而可以获得最终的风控模型。
43.进一步的,用户根据实际风控需求选择各风控子模型进行融合得到风控模型后,还可以对风控模型进行测试,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入模型测试界面,参阅图2h所示,用户进入模型测试界面后,可以针对模型测试界面中模型测试子界面上显示的各风控模型执行选择操作,此时,风控模型构建系统响应于针对模型测试界面上显示的各风控模型执行的选择操作,确定该选择操作所选取的风控模型,之后,用户还可以针对模型测试界面上显示的测试控件执行触发操作,例如通过点击测试控件来执行触发操作,此时,风控模型构建系统响应于针对模型测试界面上显示的测试控件执行的触发操作,基于测试用户集合中各用户所对应的多维度信用特征样本数据和综合信用风险标注数据,按照该选择操作所选取的风控模型的数量,对该选择操作所选取的风控模型进行独立测试或批量测试(图2h仅以独立测试为例),在具体实施时,风控模型构建系统可以基于测试用户集合中各用户所对应的多维度信用特征样本数据和综合信用风险标注数据,采用k折验证算法,按照该选择操作所选取的风控模型的数量,对该选择操作所选取的风控模型进行独立测试或批量测试,进一步的,风控模型构建系统对该选择操作所选取的风控模型的测试完毕后,还可以在模型测试界面的测试显示区域中显示选择操作所选取的风控模型的模型测试结果。
44.此外,本技术实施例中,用户除了可以对风控模型进行测试,还可以对风控模型进行格式校验,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入格式校验界面,用户进入格式校验界面后,可以针对格式校验界面上显示的各风控模型执行选择操作,此时,风控模型构建系统响应于针对格式校验界面上显示的各风控模型执行的选择操作,确
定该选择操作所选取的各风控模型,之后,用户还可以针对格式校验界面上显示的校验控件执行触发操作,例如通过点击校验控件来执行触发操作,此时,风控模型构建系统响应于针对格式校验界面上显示的校验控件执行的触发操作,基于设定格式校验规则,分别对选择操作所选取的各风控模型进行格式校验,在具体实施时,风控模型构建系统可以基于设定格式校验规则,分别对选择操作所选取的各风控模型进行名称格式、数据长度、重复数据等各类格式校验,进一步的,风控模型构建系统对该选择操作所选取的风控模型的格式校验完毕后,还可以在格式校验界面上显示的校验显示区域中显示选择操作所选取的各风控模型的格式校验结果。
45.另外,用户还可以对风控模型进行异常检测,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入异常检测界面,用户进入异常检测界面后,可以针对异常检测界面上显示的各风控模型执行选择操作,此时,风控模型构建系统响应于针对异常检测界面上显示的各风控模型执行的选择操作,确定选择操作所选取的各风控模型,之后,用户还可以针对异常检测界面上显示的检测控件执行触发操作,例如通过点击检测控件来执行触发操作,此时,风控模型构建系统响应于针对异常检测界面上的检测控件执行的触发操作,基于选择操作所选取的各风控模型在测试过程中的运行日志数据,对选择操作所选取的各风控模型进行异常检测,进一步的,风控模型构建系统对该选择操作所选取的风控模型的异常检测完毕后,还可以在异常检测界面上的检测显示区域中显示选择操作所选取的各风控模型的异常检测结果。
46.进一步的,本技术实施例中,用户对风控模型进行测试、格式校验和/或异常检测后,即可对风控模型进行审批发布处理,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入模型审批界面,参阅图2i所示,用户进入模型审批界面后,可以针对模型审批界面上显示的各风控模型执行选择操作,此时,风控模型构建系统响应于针对模型审批界面上显示的各风控模型执行的选取操作,确定选择操作所选取的各风控模型,之后,用户还可以针对模型审批界面上显示的审批控件执行触发操作,例如通过点击审批控件来执行触发操作,此时,风控模型构建系统响应于针对模型审批界面上显示的审批控件执行的触发操作,基于选取操作所选取的各风控模型发起审批流程,进一步的,风控模型构建系统确定选取操作所选取的各风控模型的审批流程结束时,在模型审批界面上显示表征选取操作所对应的各风控模型审批结果的消息。
47.当然,本技术实施例中,用户还可以对风控模型和风控子模型进行查看,具体的,参阅图2b所示,用户可以通过主界面上的导航栏进入模型查看界面,参阅图2j所示,用户进入模型查看界面后,可以在模型查询界面上显示的模型查询区域中执行查询操作,例如,通过在模型查询区域中输入模型名称、模型编号、风控场景、时间范围等查询关键字来执行查询操作,此时,风控模型构建系统响应于在模型查询界面上显示的模型查询区域中执行的查询操作,从设定存储区域保存的各风控模型和各风控子模型中,查询与查询操作所对应的查询关键字相匹配的目标风控模型,并在模型查询界面上显示的模型显示区域中显示目标风控模型。
48.值得说的是,本技术实施例中,针对风控子模型导入、风控子模型编辑、风控子模型训练、风控子模型/风控模型测试、风控子模型/风控模型查看、风控模型格式校验、风控模型异常检测、风控模型发布审批等处理流程,可以分别部署成独立的功能模块,一个功能
模块异常不会影响其他功能模块的运行,从而可以提高风控模型构建系统的稳定性和健壮性,此外,在具体实施时,针对每一功能模块可以分别部署一个接口,从而可以通过调用接口来实现对该接口所对应的功能模块的调用,进而可以实现通过调用功能模块来执行相应处理流程,例如执行风控子模型导入、风控子模型编辑、风控子模型训练、风控子模型/风控模型测试、风控子模型/风控模型查看、风控模型格式校验、风控模型异常检测、风控模型发布审批等处理流程。
49.基于上述实施例,本技术实施例提供了一种风控模型处理引擎,该风控模型处理引擎可以应用于风控模型构建系统,参阅图3所示,本技术实施例提供的风控模型处理引擎300至少包括:子模型选取模块301,用于响应于针对模型合成界面上显示的不同风控场景的风控子模型执行的选取操作,确定选取操作所选取的不同风控场景的风控子模型;其中,不同风控场景的风控子模型是基于目标用户的多维度信用特征数据对目标用户在不同风控场景下的信用风险进行评估的模型;子模型融合模块302,用于响应于针对模型合成界面上显示的合成控件执行的触发操作,按照选取操作所选取的不同风控场景的风控子模型之间的层级关系,对选取操作所选取的不同风控场景的风控子模型进行融合得到风控模型;其中,风控模型是基于目标用户在不同风控场景下的信用风险对目标用户的综合信用风险进行评估的模型。
50.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎300还包括:模型导入模块303,用于响应于在模型导入界面上显示的模型导入区域中执行的导入操作,确定导入操作所导入的风控子模型;响应于针对模型导入界面上显示的导入控件执行的触发操作,基于导入操作所导入的风控子模型的风控场景,将导入操作所导入的风控子模型保存至设定存储区域;和/或;模型编辑模块304,用于响应于在模型编辑界面上显示的模型编辑区域中执行的编辑操作,获取编辑操作所编辑的风控子模型;响应于针对模型编辑界面上显示的保存控件执行的触发操作,基于编辑操作所编辑的风控子模型的风控场景,将编辑操作所编辑的风控子模型保存至设定存储区域。
51.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎300还包括:模型查询模块305,用于响应于在模型查询界面上显示的模型查询区域中执行的查询操作,从设定存储区域保存的各风控模型和各风控子模型中,查询与查询操作所对应的查询关键字相匹配的目标风控模型,并在模型查询界面上显示的模型显示区域中显示目标风控模型。
52.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎300还包括:模型训练模块306,用于响应于针对模型训练界面上显示的各风控子模型执行的选择操作,确定选择操作所选取的各风控子模型;响应于针对模型训练界面上显示的训练控件执行的触发操作,基于训练用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,对选取操作所选取的各风控子模型进行训练。
53.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎300还包括:模型测试模块307,用于响应于针对模型测试界面上显示的各风控模型执行的选
择操作,确定选择操作所选取的风控模型;响应于针对模型测试界面上显示的测试控件执行的触发操作,基于测试用户集合中各用户所对应的多维度信用特征样本数据和综合信用风险标注数据,按照选择操作所选取的风控模型的数量,对选择操作所选取的风控模型进行独立测试或批量测试;在模型测试界面的测试显示区域中显示选择操作所选取的风控模型的模型测试结果;和/或;响应于针对模型测试界面上显示的各风控子模型执行的选择操作,确定选择操作所选取的风控子模型;响应于针对模型测试界面上显示的测试控件执行的触发操作,基于测试用户集合中各用户所对应的多维度信用特征样本数据和信用风险标注数据,按照选择操作所选取的风控子模型的数量,对选择操作所选取的风控子模型进行独立测试或批量测试;在模型测试界面的测试显示区域中显示选择操作所选取的风控子模型的模型测试结果。
54.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎300还包括:格式校验模块308,用于响应于针对格式校验界面上显示的各风控模型执行的选择操作,确定选择操作所选取的各风控模型;响应于针对格式校验界面上显示的校验控件执行的触发操作,基于设定格式校验规则,分别对选择操作所选取的各风控模型进行格式校验,并在格式校验界面上显示的校验显示区域中显示选择操作所选取的各风控模型的格式校验结果;和/或;异常检测模块309,用于响应于针对异常检测界面上显示的各风控模型执行的选择操作,确定选择操作所选取的各风控模型;响应于针对异常检测界面上的检测控件执行的触发操作,基于选择操作所选取的各风控模型在测试过程中的运行日志数据,对选择操作所选取的各风控模型进行异常检测,并在异常检测界面上的检测显示区域中显示选择操作所选取的各风控模型的异常检测结果。
55.在一种可能的实施方式中,本技术实施例提供的风控模型处理引擎300还包括:发布审批模块310,用于响应于针对模型审批界面上显示的各风控模型执行的选取操作,确定选择操作所选取的各风控模型;响应于针对模型审批界面上显示的审批控件执行的触发操作,基于选取操作所选取的各风控模型发起审批流程,确定选取操作所选取的各风控模型的审批流程结束时,在模型审批界面上显示表征选取操作所对应的各风控模型审批结果的消息。
56.需要说明的是,本技术实施例提供的风控模型处理引擎300解决技术问题的原理与本技术实施例提供的风控模型处理方法相似,因此,本技术实施例提供的风控模型处理引擎300的实施可以参见本技术实施例提供的风控模型处理方法的实施,重复之处不再赘述。
57.在介绍了本技术实施例提供的风控模型处理方法和引擎之后,接下来,对本技术实施例提供的电子设备进行简单介绍。
58.参阅图4所示,本技术实施例提供的电子设备400至少包括:处理器401、存储器402和存储在存储器402上并可在处理器401上运行的计算机程序,处理器401执行计算机程序时实现本技术实施例提供的风控模型处理方法。
59.本技术实施例提供的电子设备400还可以包括连接不同组件(包括处理器401和存储器402)的总线403。其中,总线403表示几类总线结构中的一种或多种,包括存储器总线、
外围总线、局域总线等。
60.存储器402可以包括易失性存储器形式的可读介质,例如随机存储器(random access memory,ram)4021和/或高速缓存存储器4022,还可以进一步包括只读存储器(read only memory,rom)4023。
61.存储器402还可以包括具有一组(至少一个)程序模块4024的程序工具4025,程序模块4024包括但不限于:操作子系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
62.电子设备400也可以与一个或多个外部设备404(例如键盘、遥控器等)通信,还可以与一个或者多个使得用户能与电子设备400交互的设备通信(例如手机、电脑等),和/或,与使得电子设备400与一个或多个其它电子设备400进行通信的任何设备(例如路由器、调制解调器等)通信。这种通信可以通过输入/输出(input /output,i/o)接口405进行。并且,电子设备400还可以通过网络适配器406与一个或者多个网络(例如局域网(local area network,lan),广域网(wide area network,wan)和/或公共网络,例如因特网)通信。如图4所示,网络适配器406通过总线403与电子设备400的其它模块通信。应当理解,尽管图4中未示出,可以结合电子设备400使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、磁盘阵列(redundant arrays of independent disks,raid)子系统、磁带驱动器以及数据备份存储子系统等。
63.需要说明的是,图4所示的电子设备400仅仅是一个示例,不应对本技术实施例的功能和使用范围带来任何限制。
64.下面对本技术实施例提供的计算机可读存储介质进行介绍。本技术实施例提供的计算机可读存储介质存储有计算机指令,计算机指令被处理器执行时实现本技术实施例提供的风控模型处理方法。具体地,该计算机指令可以内置或者安装在处理器中,这样,处理器就可以通过执行内置或者安装的计算机指令实现本技术实施例提供的风控模型处理方法。
65.此外,本技术实施例提供的风控模型处理方法还可以实现为一种计算机程序产品,该计算机程序产品包括程序代码,该程序代码在处理器上运行时实现本技术实施例提供的风控模型处理方法。
66.本技术实施例提供的计算机程序产品可以采用一个或多个可读介质的任意组合,其中,可读介质可以是可读信号介质或者可读存储介质,而可读存储介质可以是但不限于是电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合,具体地,可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、ram、rom、可擦式可编程只读存储器(erasable programmable read only memory,eprom)、光纤、便携式紧凑盘只读存储器(compact disc read-only memory,cd-rom)、光存储器件、磁存储器件、或者上述的任意合适的组合。
67.本技术实施例提供的计算机程序产品可以采用cd-rom并包括程序代码,还可以在诸如计算机、手机、个人数字助理(personal digital assistant,pda)等电子设备上运行。然而,本技术实施例提供的计算机程序产品不限于此,本技术实施例中,可读存储介质可以是任何包含或存储程序代码的有形介质,该程序代码可以被指令执行系统、装置或者器件使用或者与其结合使用。
68.应当注意,尽管在上文详细描述中提及了装置的若干单元或子单元,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本技术的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。反之,上文描述的一个单元的特征和功能可以进一步划分为由多个单元来具体化。
69.此外,尽管在附图中以特定顺序描述了本技术方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
70.尽管已描述了本技术的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本技术范围的所有变更和修改。
71.显然,本领域的技术人员可以对本技术实施例进行各种改动和变型而不脱离本技术实施例的精神和范围。这样,倘若本技术实施例的这些修改和变型属于本技术权利要求及其等同技术的范围之内,则本技术也意图包含这些改动和变型在内。