一种基于变补偿因子的型材三维拉弯成形回弹补偿方法

文档序号:31930197发布日期:2022-10-26 00:07阅读:68来源:国知局
一种基于变补偿因子的型材三维拉弯成形回弹补偿方法

1.本发明涉及型材三维拉弯成形领域,特别涉及一种基于变补偿因子的型材三维拉弯成形回弹补偿方法。


背景技术:

2.回弹已成为型材拉弯成形过程中的难以避免的缺陷之一,严重影响着工件的尺寸精度和成形质量,给后续装配工艺带来了极大困难,因此,如何解决型材拉弯成形过程中的回弹问题面临着巨大挑战。
3.为提高工件的成形精度和成形质量,一般通过调整工艺参数、模具参数、材料参数或增加额外工艺抑制工件的回弹以减小形状误差,但是一般情况下,工件的材料参数是固定不变的,通过调整工艺参数或施加额外的工艺不仅不能完全消除回弹,而且还会影响成形件的表面质量和使用寿命,无法满足工件的使用要求。因此,为减小型材成形的回弹误差,对模具参数进行优化是最佳的解决方法。
4.在型材回弹补偿方面,主要应用回弹补偿法调整模具型面以减小回弹误差,模具型面补偿法是一个迭代过程,即在已知回弹量的前提下,通过修正模具型面使坯料发生过弯,利用回弹规律,使卸载回弹后的形状与目标形状相近,以减小形状误差。传统的模具型面补偿方法一般采用“试错法”,通过多次试模不断改变模具型面,才能达到成形要求,模具设计要依赖于操作员的实际经验和技能,导致模具研发周期过长,“试错法”不仅耗费着大量的时间和金钱,实际操作效率低下,而且只能针对常用材料和形状简单的目标形状,严重制约着工件精确成形的发展。
5.目前,常用的回弹补偿方法主要有几何补偿法和光顺几何法,但是这两种方法的应用特别局限,不适用于三维拉弯成形复杂形状的型材,而且精度和效率均达不到指定要求。


技术实现要素:

6.本发明为了解决现有技术的不足,针对变曲率型材的三维变形过程提出了一种基于变补偿因子的型材三维拉弯成形回弹补偿方法。
7.包括如下步骤:
8.利用auto cad建立辊轮式多点模具三维拉弯数学模型,设计出理想形状的三维工件,计算出夹钳和模具的运动轨迹。
9.按照辊轮式多点模具三维拉弯数学模型对三维制件进行拉弯试验,三维制件成形结束后,把成形结束后的三维制件放在回弹检测装置上,检测回弹误差,沿三维制件长度方向选取m个节点,分别记录每个节点的水平弯曲回弹误差和垂直弯曲回弹误差。
10.检验回弹误差是否小于t倍的节点型材长度,所述节点型材长度指:被均等分为m段的型材长度,若小于t倍的节点型材长度,输出工件合格信息至管理员端口。若不小于t倍的节点型材长度,进行水平弯曲回弹补偿,测量水平回弹误差。t表示系统设定常数。
11.首先对变形的三维制件进行水平弯曲回弹补偿,将m个节点的水平回弹误差分为n部分进行第一次迭代:
[0012][0013]
其中,δyi是第i个节点处的水平弯曲回弹误差,是工件水平弯曲回弹前后的平均误差,li代表第i部分的型材长度,代表第1次迭代第n部分的补偿因子,δy:型材水平弯曲回弹误差,代表型材第1次迭代的第1部分补偿因子值,型材第1次迭代的第2部分补偿因子值,代表型材第1次迭代的第n-1部分补偿因子值,代表型材第1次迭代的第n部分补偿因子值;
[0014]
利用已知的补偿因子对辊轮式多点模具拉弯设备重新进行水平弯曲调形,即根据第1次迭代计算得到的补偿因子依次调整辊轮式多点模具拉弯设备的对应模具单元体的位置坐标值,调整后的模具单元体重新构成修正的模具成形包络面,完成水平弯曲调形。经第1次迭代后,利用迭代公式进行检验水平弯曲回弹误差是否符合成形精度要求。若符合,迭代结束。若不符合,利用二分法原理求解
[0015][0016]
代表第2次迭代第1部分的补偿因子值;代表型材第2次迭代的第2部分补偿因子值;代表型材第2次迭代的第n-1部分补偿因子值;代表第2次迭代第n部分的补偿因子值;λ

和η

代表常数。
[0017]
利用已知的补偿因子对辊轮式多点模具拉弯设备重新进行水平弯曲调形;
[0018]
重复上述步骤,直到水平弯曲回弹误差符合要求时,迭代结束,记录迭代次数为h;获得最佳的回弹补偿因子
[0019]
检验水平回弹误差是否小于t倍的节点水平型材长度,若不小于t倍的节点水平型材长度,进行迭代补偿,直到水平回弹误差小于t倍的节点水平型材长度,进行垂直弯曲回弹补偿;
[0020]
重复上述步骤,直到水平弯曲回弹误差符合要求时,迭代结束。因此,可获得最佳的回弹补偿因子α3(δy)。
[0021]
检验水平回弹误差是否小于t倍的节点水平型材长度,若不小于t倍的节点水平型材长度,进行迭代补偿,直到水平回弹误差小于t倍的节点水平型材长度,进行垂直弯曲回
弹补偿。
[0022]
在垂直弯曲回弹迭代补偿过程中,利用已知的补偿因子计算垂直弯曲回弹补偿过程中辊轮式模具所需移动的位移,根据计算所得的位移,使辊轮式模具在垂直弯曲回弹补偿过程中移动到指定位置,完成垂直弯曲变形,经第一次迭代后,利用迭代公式进行检验垂直弯曲回弹误差是否符合成形精度要求。若符合,迭代结束,若不符合,利用二分法原理求解;
[0023]
重复上述步骤,直到垂直弯曲回弹误差符合要求时,迭代结束,记录迭代次数为j,利用二分法的原理可得到最佳回弹补偿因子代表垂直弯曲回弹误差计算时,第1次迭代第n部分的补偿因子,δz代表型材垂直弯曲回弹误差。
[0024]
在进行垂直弯曲回弹补偿后,测量垂直回弹误差,检验垂直回弹误差是否小于t倍的节点垂直型材长度,若不小于t倍的节点垂直型材长度,进行迭代补偿,直到小于t倍的节点垂直型材长度,输出合格信息至管理员端口。所述成形精度要求表示t倍的型材长度。
[0025]
所述迭代公式是采用数学二分法的基本思想进行的。本发明采用数学二分法的基本思想快速查找αk的近似解,缩小求解区间,逐渐逼近正确解。
[0026]
把型材中心线离散为n个几何节点,在三维空间中,假设为目标形状,为型材回弹后形状。经回弹补偿后,得到模具型面为
[0027]
本发明把型材中心的n个节点离散为k部分,代表目标形状;代表型材回弹后形状;代表回弹补偿后的模具型面;代表第n个节点对应的目标形状;代表第n个节点对应的型材回弹后形状;代表第n个节点对应的回弹补偿后的模具型面;δ代表型材的实际回弹误差;αk代表第k部分补偿因子;δk代表第k部分处的回弹误差,并且αk的值与δ密切相关。故公式可写为:
[0028][0029]
在实际补偿过程中,需要多次迭代,减小形状误差,逼近目标形状,于是得到公式:
[0030][0031]
当成形回弹误差满足迭代公式时,停止迭代。所述迭代公式为:
[0032][0033]
其中ξ1、ξ2…
ξk均为t倍的lk,lk代表型材第k部分的型材长度;代表第j次迭代的第k部分的补偿因子;代表第j次迭代的第k部分的型材回弹后形状;代表第j次迭代的第k部分的回弹补偿后的模具型面;ξk代表第k部分的成形回弹误差收敛值。
[0034]
与现有技术相比,本发明所达到的有益效果是:利用本发明的方法,在迭代过程中能够使得回弹补偿更精确,得到最接近真实解的补偿因子αk,并且收敛速度加快。可高效快速的得到最佳回弹补偿因子,加快迭代收敛的速度,提高回弹补偿效率。
附图说明
[0035]
图1为本发明一种基于变补偿因子的型材三维拉弯成形回弹补偿方法的辊轮式多点模具三维拉弯技术成形原理示意图;
[0036]
图2为本发明一种基于变补偿因子的型材三维拉弯成形回弹补偿方法的型材三维拉弯成形回弹补偿的迭代过程示意图;
[0037]
图3为本发明一种基于变补偿因子的型材三维拉弯成形回弹补偿方法的型材三维拉弯成形回弹补偿原理图;
[0038]
图4为本发明一种基于变补偿因子的型材三维拉弯成形回弹补偿方法的基于变补偿因子的型材三维拉弯成形回弹补偿流程图。
具体实施方式
[0039]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0040]
如图1至图4所示,本发明提供实施例一:
[0041]
在型材的回弹补偿方面,本技术提供了一种基于变补偿因子的型材三维拉弯成形回弹补偿方法,如下所示:
[0042]
型材在辊轮式多点模具三维拉弯成形过程中发生三维变形,成形过程十分复杂。如果在三维空间中直接对工件回弹补偿,由于型材三维变形的多方向性,回弹补偿过程十分繁琐,难以达到成形精度。根据辊轮式多点模具三维拉弯技术成形原理(如图1、图2所示),本发明把总回弹补偿过程分解为水平弯曲回弹补偿和垂直弯曲回弹补偿,如图3所示。因此,可对型材三维拉弯成形的回弹补偿过程进行分步回弹补偿,先进行水平弯曲回弹补偿
①②③④
,再进行垂直弯曲回弹补偿
⑤⑥⑦⑧

[0043]
本方法包括:
[0044]
步骤1:利用auto cad建立辊轮式多点模具三维拉弯数学模型,设计出理想形状的三维制件,计算出夹钳和模具的运动轨迹。
[0045]
所述理想形状指三维制件的形状满足系统预设的规定尺寸。
[0046]
步骤2:按照设计的数学模型进行拉弯试验。成形结束后把已变形的三维制件放在回弹检测装置上检测回弹量。沿型材长度方向选取m个节点,分别记录每个节点的水平弯曲回弹误差和垂直弯曲回弹误差。
[0047]
步骤3:首先对型材三维拉弯变形进行水平弯曲回弹补偿,将m个节点的水平回弹误差分为n部分进行第一次迭代,如公式所示:
[0048]
在本实施例中,取m=30;n=3;
[0049][0050]
其中,δyi代表第i个节点处的水平弯曲回弹误差;代表工件水平弯曲回弹前后的平均误差;li代表第i部分的型材长度;λ代表型材第1次迭代的第2部分补偿因子值;η代表型材第1次迭代的第3部分补偿因子值;代表第1次迭代第3部分的补偿因子。
[0051]
步骤4:利用已知的补偿因子对辊轮式多点模具拉弯设备重新进行水平弯曲调形,根据计算得到的数据调整模具单元移动的位移完成水平弯曲调形。经第一次迭代后,利用迭代公式进行检验水平弯曲回弹误差是否符合成形精度要求。若符合,迭代结束。若不符合,利用二分法原理求解
[0052][0053]
λ'代表型材第2次迭代的第2部分补偿因子值;η'代表型材第2次迭代的第3部分补偿因子值;λ'代表型材第2次迭代的第2部分补偿因子值;偿因子值;λ'代表型材第2次迭代的第2部分补偿因子值;代表第2次迭代第3部分的补偿因子。
[0054]
然后,再利用迭代公式检验水平弯曲回弹误差。
[0055]
重复步骤4,直到水平弯曲回弹误差符合要求时,迭代结束。因此,可获得最佳的回弹补偿因子α3(δy)。
[0056]
步骤5:同理,在垂直弯曲回弹迭代补偿过程中,利用已知的补偿因子步骤5:同理,在垂直弯曲回弹迭代补偿过程中,利用已知的补偿因子,计算垂直弯曲回弹补偿过程中辊轮式模具所需移动的位移。根据计算所得的位移,使辊轮式模具在垂直弯曲回弹补偿过程中移动到指定位置完成垂直弯曲变形,经第一次迭代后,利用迭代公式进行检验垂直弯曲回弹误差是否符合成形精度要求。若符合,迭代结束。若不符合,利用二分法原理求解。
[0057]
3.步骤6:重复步骤5,直到垂直弯曲回弹误差符合要求时,迭代结束。因此,利用二
分法的原理可得到最佳回弹补偿因子。所述成形精度要求表示t倍的型材长度。
[0058]
在本实施例中的迭代公式是采用数学二分法的基本思想进行的,具体如下:
[0059]
把型材中心线离散为n个几何节点。在三维空间中,假设为目标形状,为型材回弹后形状,经补偿后,得到模具型面为
[0060][0061][0062][0063]
在实际补偿过程中,需多次迭代减小形状误差逼近目标形状:
[0064][0065]
式中α代表补偿因子;j代表第j次迭代补偿;代表回弹补偿后的模具型面;代表型材回弹后形状;代表目标形状。
[0066]
当几何偏差满足公式时,停止迭代:
[0067][0068]
一般来说,经过若干次迭代修正模具型面后,型材会收敛于目标形状,如图2所示。为加快收敛速度,本发明对补偿因子进行改进。
[0069]
本发明把型材中心的n个节点离散为k部分,αk代表第k部分补偿因子;δk代表第k部分处的回弹误差,并且αk的值与δ密切相关。故公式可写为:
[0070][0071]
在迭代过程中,为加速收敛,使补偿形状快速逼近目标形状,必须得到最接近的补偿因子αk值。
[0072]
于是得到公式:
[0073][0074]
当成形回弹误差满足迭代公式时,停止迭代。所述迭代公式为:
[0075]
[0076]
其中ξ1、ξ2…
ξk均为t倍的lk,lk代表型材第k部分的型材长度;代表第j次迭代的第k部分的补偿因子;代表第j次迭代的第k部分的型材回弹后形状;代表第j次迭代的第k部分的回弹补偿后的模具型面;ξk代表第k部分的成形回弹误差收敛值。
[0077]
本发明采用数学二分法的基本思想快速查找αk的近似解,缩小求解区间,逐渐逼近正确解。
[0078]
以α1为例,假设补偿因子的求解区间是[a,b]且经补偿后用迭代公式判断是否停止迭代,若需进一步迭代,则第二次迭代所需补偿因子α
12
的值满足以下关系:若ξ>0,若ξ>0,
[0079]
当第二次迭代结束后,用迭代公式判断是否停止迭代。以此类推,直到公式成立然后停止迭代,同理,α2,α3,

,αk也可利用上述规律求得。
[0080]
型材在辊轮式多点模具三维拉弯成形过程中发生三维变形,成形过程十分复杂。如果在三维空间中直接对工件回弹补偿,由于型材三维变形的多方向性,回弹补偿过程十分繁琐,难以达到成形精度,根据辊轮式多点模具三维拉弯技术成形原理,本发明把总回弹补偿过程分解为水平弯曲回弹补偿和垂直弯曲回弹补偿,因此,可对型材三维拉弯成形的回弹补偿过程进行分步回弹补偿,先进行水平弯曲回弹补偿
①②③④
,再进行垂直弯曲回弹补偿
⑤⑥⑦⑧

[0081]
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
[0082]
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1