一种基于阴影的山体高度反演方法与流程

文档序号:32215612发布日期:2022-11-16 07:27阅读:116来源:国知局
一种基于阴影的山体高度反演方法与流程

1.本发明涉山体高度反演技术领域,具体为一种基于阴影的山体高度反演方法。


背景技术:

2.随着数字化城市建设的快速发展,快速高效地获取建筑物高度信息尤为重要,不同类别建筑物阴影需要用不同的方法进行高度反演,首先通过u-net提取建筑物阴影,然后提出一种基于建筑物多边形的阴影去噪方法,最后根据一定规则对去噪后的建筑物阴影进行分类,山体高度的反演与建筑物高度的反演有着许多的相似之处;
3.但是目前的山体高度反演方法,为了保证一定估算精度,需要对建筑物阴影长度进行修正,去掉干扰阴影,计算建筑物高度,该方法复杂,工作量大,计算效率较低,且计算精度不高的问题。


技术实现要素:

4.本发明提供一种基于阴影的山体高度反演方法,可以有效解决上述背景技术中提出为了保证一定估算精度,需要对建筑物阴影长度进行修正,去除干扰阴影,计算建筑物高度,该方法复杂,工作量大,计算效率较低,且计算精度不高的问题。
5.为实现上述目的,本发明提供如下技术方案:一种基于阴影的山体高度反演方法,其特征在于,包括以下步骤:
6.s1、建立山体阴影数据集;
7.s2、获取目标山体区域的遥感影像;
8.s3、基于u-net的山体阴影提取;
9.s4、优化阴影提取效果;
10.s5、提取阴影特征线;
11.s6、求取太阳方位角;
12.s7、求取阴影长度;
13.s8、计算山体高度。
14.根据上述技术方案,所述s8中计算山体高度的计算步骤如下:
15.根据山体的阴影长度和太阳高度角计算山体高度的估算值;
16.太阳高度角用公式(1)计算;
17.h
θ
=arcsin(sins
ω
sinω+coss
ω
cosωcost)
ꢀꢀꢀ
(1)
18.式中h
θ
为太阳高度角;
19.sw为太阳赤纬;
20.ω为影像中观测地点的地理纬度;
21.t为观测时刻太阳时角;
22.公式(1)的赤纬sw可用公式(2)计算;
23.sw=0.3723+23.2567sin(θ0)+0.1149sin(2θ0)-0.1712sin(3θ0)-0.7580cos(θ0)+
0.3656cos(2θ0)+0.0201cos(3θ0)
ꢀꢀꢀ
(2)
24.公式(2)中,θ0用公式(3)计算;
25.θ0=360
°×
(n+

n-n0)/365.242
ꢀꢀꢀ
(3)
26.公式(3)中,n(d)为按天数顺序排列的积日,1月1日为0,2日为1,其余类推;
27.△
n(d)为积日修正值,用公式(4)计算;
28.△
n=(
±
(d+m/60)/15+s+f/60)/24
ꢀꢀꢀ
(4)
29.公式(4)中,d为观测点经度的度值;
30.m为分值,东经取负号,西经取正号;
31.s为观测时刻的小时值;
32.f为分钟值;
33.公式(3)中的n0(d)用公式(5)进行计算;
34.n0=79.6764+0.2422
×
(y-1985)-int(0.25
×
(y-1985))
ꢀꢀꢀ
(5)
35.公式(5)中,y为年份;
36.公式(1)中的时角t可用公式(6)进行计算;
37.t=(s+f/60+lc+eq/60-12)
×
15
°ꢀꢀꢀ
(6)
38.公式(6)中,lc(h)为以时间表示的经度修正值,每15度对应的时间为1小时,可用公式(7)计算;
39.lc=(d+m/60-120)/15
ꢀꢀꢀ
(7)
40.式中d为观测点经度的度值,m为分值,如果地方子午圈在标准子午圈的东边,则lc为正,反之为负;
41.eq(min)为真太阳时与地方平均太阳时之差,用公式(8)进行计算;
42.eq=0.0028-1.9857sin(θ0)+9.9059sin(2θ0)
[0043]-7.0924cos(θ0)-0.6882cos(2θ0)
ꢀꢀꢀ
(8)
[0044]
公式(8)中,θ0用公式(3)进行计算;
[0045]
h为目标山体估算高度,用公式(9)进行计算;
[0046]
h=l
×
tanθ0(9)
[0047]
公式(9)中,l为s7中求取的阴影长度。
[0048]
根据上述技术方案,所述s1中建立山体阴影数据集的步骤如下:
[0049]
a1、自建山体反演数据集;
[0050]
a2、获取样本原始高分辨率遥感图像;
[0051]
a3、预处理操作;
[0052]
a4、筛选所需的样本图像;
[0053]
a5、构建数据集;
[0054]
a6、对数据集进行划分。
[0055]
根据上述技术方案,所述a3中,预处理操作包括裁剪、辐射定标、大气校正、正射校正、图像配准和统一比例尺;
[0056]
所述a5中,构建数据集的方式为人工标注阴影掩膜方式;
[0057]
所述a6中,数据集划分为训练集、验证集和测试集。
[0058]
根据上述技术方案,所述s2中获取包含目标山体区域的原始高分辨率遥感影像,
对其进行同样的裁剪、辐射定标、大气校正、正射校正、图像配准和统一比例尺预处理过程。
[0059]
根据上述技术方案,所述s3中采用全卷积神经网络中广泛应用的u-net网络对高分影像进行语义分割操作从而提取山体阴影,同时在模型中添加bn和残差连接以缓解u-net网络模型出现过拟合现象,优化模型性能。
[0060]
根据上述技术方案,所述s4中从待检测原始影像中提取后,得到阴影检测结果图,由于检测的阴影中存在其他非山体的阴影,对检测阴影结果进行提纯和去噪处理。
[0061]
根据上述技术方案,所述s5中基于所获取的山体阴影评估阴影的多条特征线的提取难度,特征线是指目标山体的山脊角点与其阴影点连线。特征线段的提取难易度评估方式具体包括:无论太阳和卫星是否位于目标山体的同侧,特征线提取与高度换算均不受影响;判断摄取所述遥感图像的摄取高度角是否大于80
°
,摄取角度越高,提取难度越大;从山体海拔上,高大山体的角点成像点不易受其它山体的遮挡,影像上判读比较方便;山脊角点所对应的阴影点的判读会受到地面坡地、建筑和植被的一定影响,这时要判断阴影点是否落到坡地、建筑或植被上,通常来讲,阴影点所落的坡地、建筑或植被高度越高,阴影点的提取误差越大;判断山脊角点其阴影点是否落在建筑密集区,如果目标建筑周围的建筑密度越大,则难度值越大;判断目标山体阴影周围是否有水面和植被,周围存在水面和植被会增加提取难度;基于上述判断结果评估并赋予目标山体的阴影特征线的提取难度值。
[0062]
总的来说,阴影特征线提取过程中需根据各影响因素综合评估提取难度值。在实际操作过程中,还需根据图像中各个特征线的模糊度、被遮挡情况等信息,调整各特征线的评估提取难度值。最终在影像上选取最低提取难度值的特征线,再从所述影像中提取目标山体阴影的选定特征线。根据上述技术方案,所述s6中基于所提取的阴影特征线与当地子午线的夹角计算影像中此时的太阳方位角,由正北方向起,顺时针转至太阳与像元的连线在地表的投影所在的射线,顶点为地表像元点,这个旋转的角度称为太阳方位角。
[0063]
根据上述技术方案,所述s7中根据太阳方位角沿着阴影投射方向绘制覆盖目标阴影区域的等间距平行线段,将所作阴影方向平行线段与阴影区域进行交集的处理,得到阴影方向的交集线段,对比获取的所有交集线段的长度,取出其中最大值,作为该阴影在影像上的投影方向长度,即山体最高点在阴影方向的投影长度。
[0064]
与现有技术相比,本发明的有益效果:
[0065]
1、通过基于u-net的山体阴影提取,优化阴影提取效果,提取阴影特征线,求取太阳方位角、阴影长进而计算山体高度,不需要对建筑物阴影长度进行复杂的修正即可计算出山体高度,采用基于深度学习的方法进行阴影提取,提高了山体阴影的检测效率,可获得卓越的提取效果,经过深度学习网络提取出山体阴影结果图,对结果图进行形态学处理获得更纯净的阴影结果,可得到具有测算条件的阴影标签,工作量小,且计算精度较高。
[0066]
2、针对应用传统方法提取阴影效率低效果差的问题,提出基于深度学习的山体阴影提取方法,利用卷积神经网络在语义分割领域的发展优势,可明显提高阴影提取的效率和精度。
附图说明
[0067]
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
[0068]
图1是本发明山体高度反演的步骤流程图;
[0069]
图2是本发明山体阴影数据集建立的步骤流程图。
具体实施方式
[0070]
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
[0071]
实施例:如图1-2所示,本发明提供一种技术方案,一种基于阴影的山体高度反演方法,其特征在于,包括以下步骤:
[0072]
s1、建立山体阴影数据集;
[0073]
s2、获取目标山体区域的遥感影像;
[0074]
s3、基于u-net的山体阴影提取;
[0075]
s4、优化阴影提取效果;
[0076]
s5、提取阴影特征线;
[0077]
s6、求取太阳方位角;
[0078]
s7、求取阴影长度;
[0079]
s8、计算山体高度。
[0080]
根据上述技术方案,s8中计算山体高度的计算步骤如下:
[0081]
根据山体的阴影长度和太阳高度角计算山体高度的估算值;
[0082]
太阳高度角用公式(1)计算;
[0083]hθ
=arcsin(sins
ω
sinω+coss
ω
cosωcost)
ꢀꢀꢀ
(1)
[0084]
式中h
θ
为太阳高度角;
[0085]
sw为太阳赤纬;
[0086]
ω为影像中观测地点的地理纬度;
[0087]
t为观测时刻太阳时角;
[0088]
公式(1)的赤纬sw可用公式(2)计算;
[0089]
sw=0.3723+23.2567sin(θ0)+0.1149sin(2θ0)-0.1712sin(3θ0)-0.7580cos(θ0)+0.3656cos(2θ0)+0.0201cos(3θ0)
ꢀꢀꢀ
(2)
[0090]
公式(2)中,θ0用公式(3)计算;
[0091]
θ0=360
°×
(n+

n-n0)/365.242
ꢀꢀꢀ
(3)
[0092]
公式(3)中,n(d)为按天数顺序排列的积日,1月1日为0,2日为1,其余类推;
[0093]

n(d)为积日修正值,用公式(4)计算;
[0094]

n=(
±
(d+m/60)/15+s+f/60)/24
ꢀꢀꢀ
(4)
[0095]
公式(4)中,d为观测点经度的度值;
[0096]
m为分值,东经取负号,西经取正号;
[0097]
s为观测时刻的小时值;
[0098]
f为分钟值;
[0099]
公式(3)中的n0(d)用公式(5)进行计算;
[0100]
n0=79.6764+0.2422
×
(y-1985)-int(0.25
×
(y-1985))
ꢀꢀꢀ
(5)
[0101]
公式(5)中,y为年份;
[0102]
公式(1)中的时角t可用公式(6)进行计算;
[0103]
t=(s+f/60+lc+eq/60-12)
×
15
°ꢀꢀꢀ
(6)
[0104]
公式(6)中,lc(h)为以时间表示的经度修正值,每15度对应的时间为1小时,可用公式(7)计算;
[0105]
lc=(d+m/60-120)/15
ꢀꢀꢀ
(7)
[0106]
式中d为观测点经度的度值,m为分值,如果地方子午圈在标准子午圈的东边,则lc为正,反之为负;
[0107]eq
(min)为真太阳时与地方平均太阳时之差,用公式(8)进行计算;
[0108]eq
=0.0028-1.9857sin(θ0)+9.9059sin(2θ0)
[0109]-7.0924cos(θ0)-0.6882cos(2θ0)
ꢀꢀꢀ
(8)
[0110]
公式(8)中,θ0用公式(3)进行计算;
[0111]
h为目标山体估算高度,用公式(9)进行计算;
[0112]
h=l
×
tanθ0ꢀꢀꢀ
(9)
[0113]
公式(9)中,l为s7中求取的阴影长度。
[0114]
根据上述技术方案,s1中建立山体阴影数据集的步骤如下:
[0115]
a1、自建山体反演数据集;
[0116]
a2、获取样本原始高分辨率遥感图像;
[0117]
a3、预处理操作;
[0118]
a4、筛选所需的样本图像;
[0119]
a5、构建数据集;
[0120]
a6、对数据集进行划分。
[0121]
根据上述技术方案,a3中,预处理操作包括裁剪、辐射定标、大气校正、正射校正、图像配准和统一比例尺;
[0122]
a5中,构建数据集的方式为人工标注阴影掩膜方式;
[0123]
a6中,数据集划分为训练集、验证集和测试集。
[0124]
根据上述技术方案,s2中获取包含目标山体区域的原始高分辨率遥感影像,对其进行同样的裁剪、辐射定标、大气校正、正射校正、图像配准和统一比例尺预处理过程。
[0125]
根据上述技术方案,s3中采用全卷积神经网络中广泛应用的u-net网络对高分影像进行语义分割操作从而提取山体阴影,同时在模型中添加bn和残差连接以缓解u-net网络模型出现过拟合现象,优化模型性能。
[0126]
根据上述技术方案,s4中从待检测原始影像中提取后,得到阴影检测结果图,由于检测的阴影中存在其他非山体的阴影,为了减小干扰阴影和阴影区域边界模糊和阴影重合等问题对反演精度的影响,对检测阴影结果进行提纯和去噪处理。
[0127]
根据上述技术方案,s5中基于所获取的山体阴影评估阴影的多条特征线的提取难度,特征线是指目标山体的山脊角点与其阴影点连线。特征线段的提取难易度评估方式具体包括:无论太阳和卫星是否位于目标山体的同侧,特征线提取与高度换算均不受影响;判断摄取所述遥感图像的摄取高度角是否大于80
°
,摄取角度越高,提取难度越大;从山体海拔上,高大山体的角点成像点不易受其它山体的遮挡,影像上判读比较方便;山脊角点所对应的阴影点的判读会受到地面坡地、建筑和植被的一定影响,这时要判断阴影点是否落到
坡地、建筑或植被上,通常来讲,阴影点所落的坡地、建筑或植被高度越高,阴影点的提取误差越大;判断山脊角点其阴影点是否落在建筑密集区,如果目标建筑周围的建筑密度越大,则难度值越大;判断目标山体阴影周围是否有水面和植被,周围存在水面和植被会增加提取难度;基于上述判断结果评估并赋予目标山体的阴影特征线的提取难度值。
[0128]
总的来说,阴影特征线提取过程中需根据各影响因素综合评估提取难度值。在实际操作过程中,还需根据图像中各个特征线的模糊度、被遮挡情况等信息,调整各特征线的评估提取难度值。最终在影像上选取最低提取难度值的特征线,再从所述影像中提取目标山体阴影的选定特征线。
[0129]
根据上述技术方案,s6中基于所提取的阴影特征线与当地子午线的夹角计算影像中此时的太阳方位角,由正北方向起,顺时针转至太阳与像元的连线在地表的投影所在的射线,顶点为地表像元点,这个旋转的角度称为太阳方位角。
[0130]
根据上述技术方案,s7中根据太阳方位角沿着阴影投射方向绘制覆盖目标阴影区域的等间距平行线段,将所作阴影方向平行线段与阴影区域进行交集的处理,得到阴影方向的交集线段,对比获取的所有交集线段的长度,取出其中最大值,作为该阴影在影像上的投影方向长度,即山体最高点在阴影方向的投影长度。
[0131]
最后应说明的是:以上所述仅为本发明的优选实例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1