一种面向电力工业网络的安全场景仿真方法及系统与流程

文档序号:32351137发布日期:2022-11-26 13:10阅读:72来源:国知局
一种面向电力工业网络的安全场景仿真方法及系统与流程

1.本发明涉及基于大数据的工业网络安全技术领域,具体涉及一种面向电力工业网络的安全场景仿真方法及系统。


背景技术:

2.电力工业网络是一个多系统集成化的网络,拿火力发电来举例,电力工业网络需要协调供煤、锅炉、汽轮机、发电机、脱硫等多个系统的统一控制,将以上各个系统的生产过程纳入到一个控制框架当中,实现各系统的运行状态相关数据和调控指令的实时交互与共享,对于电力工业系统的稳定高效运行具有关键的作用。
3.为了实现以上功能,电力工业网络采用现场总线结合工业以太网的架构来组织。现场总线是布置在电力系统各个部分生产现场的多点式串行或者并行的数据总线,可采用cs结构、主从结构、点对点结构、点对多点结构等总线拓扑结构,并支持周期性或非周期性、分优先级的数据传输。目前比较常用的现场总线包括ff、can、hart、controlnet等协议。工业以太网是电力系统采用ethernet mac层、ip层、tcp/udp层的分层架构,主要实现控制级、管理级和远程传输。电力工业网络主要承载面向各个系统的控制数据、配置数据、传感数据的传输,且电力工业网络的传输具有数据规模大、层级多、数据长度有限、响应实时性要求高、兼具周期性和触发性传输、通讯环境变化性强的特点。
4.由于电力工业网络的关键性以及复杂性,因此其网络安全问题的重要性也日益凸显。现有技术中,维护电力工业网络安全的主要方式包括:增强冗余性设置,包括对工业网络服务器、网络接口、现场总线通道增加冗余备份;在电力工业网络的关键节点设置多数表决机制以增加容错性;加强边界安全,强化防火墙、权限认证、数据包过滤等机制;实施网络行为追踪溯源和异常监测,等等。
5.以上多种网络安全手段确实能够起到积极作用,但是,由于电力工业网络高度的时变性、非线性、特异性,其网络安全的场景形态多样,需要将以上网络安全手段放在具体安全场景和风险环境下进行必要的自适应调整,因此,如何对电力工业网络安全手段的场景适应性进行有效的评估已经成为现有技术中一个亟待解决的问题。


技术实现要素:

6.针对上述现有技术的不足,本发明所要解决的问题是:如何提供一种面向电力工业网络的安全场景仿真方法及系统。本发明实现对电力工业网络的具体安全场景进行仿真,模拟该工业网络在风险环境下的运行状态,评估该工业网络安全手段的健壮性和适应性。
7.为了解决上述问题,本发明采用了如下的技术方案:步骤100:获取电力工业网络的网络特征信息,并基于所述网络特征信息建立电力工业网络的图网络模型;步骤200:预设安全场景仿真方案,所述安全场景仿真方案包括安全事件响应状态
及其扩散机制;步骤300:根据特定安全场景,将与特定安全场景关联的安全事件输入电力工业网络的图网络模型,并定义所述图网络模型中节点模型和边模型针对所述安全事件的响应状态;根据步骤200中定义的所述安全场景仿真方案,对特定安全场景下所述图网络模型中节点模型和边模型的响应状态进行仿真。
8.优选的是,步骤100中,调用图网络基础模型库,构建描述当前电力工业网络的图网络模型;所述图网络基础模型库提供了适用于表征电力工业网络的现场总线节点、以太网节点的节点模型,以及适用于表征电力工业网络的各节点之间拓扑结构的边模型。
9.优选的是,步骤100中,对图网络模型中的每个所述节点模型和边模型的描述参数进行配置。
10.优选的是,步骤200中,该安全场景仿真方案将所述电力工业网络的图网络模型中的任一节点模型或边模型对安全事件的响应状态定义为:以及;其中,表示本节点模型或边模型并未接收到该安全事件;表示本节点模型或边模型接收到该安全事件并对该安全事件做出正向响应,即本节点模型或边模型能够消除或降低该安全事件的安全风险影响; 表示本节点模型或边模型接收到该安全事件并对该安全事件做出负向响应,即本节点模型或边模型增大了该安全事件的安全风险影响;表示本节点模型或边模型接收到该安全事件,但没有受到该安全事件的影响且没有对该安全事件做出对应的响应;其中,对于响应为的节点模型或者边模型,其也会以概率向与其具有的连接的节点模型和边模型扩散正向响应,而响应为的节点模型或边模型会以概率向与其具有的连接的节点模型和边模型扩散负向响应,对于响应状态为和的节点模型或边模型则不会扩散其响应状态。
11.优选的是,对于作为节点模型或者边模型的模型i,在第t个时间阶段获得其相邻的节点模型或边模型向其扩散的正向响应的概率和负向响应的概率分别为:其中,表示模型i在该电力工业网络的图网络模型中响应为的相邻节点模型或边模型的数量,表示模型i在该电力工业网络的图网络模型中响应为的相邻节点模型或边模型的数量。
12.优选的是,在第t个时间阶段模型i收到扩散的响应均为的概率表示为:在第t个时间阶段模型i收到扩散的响应均为的概率表示为:
在第t个时间阶段模型i收到扩散的响应和均有的概率表示为:在第t个时间阶段模型i没有收到扩散的响应的概率表示为:。
13.优选的是,步骤300中,根据拟开展仿真的特定安全场景,定义与该特定安全场景相关联的安全事件输入,并确定在所述电力工业网络的图网络模型中,该安全事件输入所针对的目标节点模型或边模型。
14.优选的是,步骤300中,参照步骤100中在所述图网络模型中对目标节点模型和边模型的描述参数,确定该目标节点模型和边模型对输入的安全事件的初始响应状态。
15.优选的是,步骤300中,根据步骤200所定义的安全事件响应的扩散机制,执行预定数量个时间阶段的仿真,从而仿真特定安全场景下对电力工业网络对安全事件输入的响应状态。
16.本发明进而提供了一种面向电力工业网络的安全场景仿真系统,包括:图网络模型构建模块,用于获取电力工业网络的网络特征信息,并基于所述网络特征信息建立电力工业网络的图网络模型;安全场景仿真方案构建模块,用于预设安全场景仿真方案,所述安全场景仿真方案包括安全事件响应状态及其扩散机制;安全事件仿真模块,根据特定安全场景,将与特定安全场景关联的安全事件输入电力工业网络的图网络模型,并定义所述图网络模型中节点模型和边模型针对所述安全事件的响应状态;根据定义的所述安全场景仿真方案,对特定安全场景下所述图网络模型中节点模型和边模型的响应状态进行仿真。
17.本发明的有益效果在于:本发明方法及系统适应了电力工业网络高度的时变性、非线性、特异性和其网络安全场景形态多样性的特点,允许构建专门针对电力工业网络的图网络模型,并且建立了针对安全事件输入准确模拟网络的响应状态及其扩散机制的模型,进而通过特定安全场景下的赋值,能够有效对电力工业网络及其网络安全手段的场景适应性展开仿真和评估,从而增加了电力工业网络安全建设的可靠性和预见性。
附图说明
18.为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:图1为本发明的面向电力工业网络的安全场景仿真方法流程示意图;图2为本发明的面向电力工业网络的安全场景仿真系统结构框图。
具体实施方式
19.下面结合具体实施例对本发明作进一步的详细说明。
20.需要说明的是,这些实施例仅用于说明本发明,而不是对本发明的限制,在本发明的构思前提下本方法的简单改进,都属于本发明要求保护的范围。
21.本发明提供了一种面向电力工业网络的安全场景仿真方法及系统。本发明实现对电力工业网络的具体安全场景进行仿真,模拟该工业网络在风险环境下的运行状态,评估该工业网络安全手段的健壮性和适应性。
22.参见图1,本发明实施例提供一种面向电力工业网络的安全场景仿真方法,包括下述步骤:步骤100:获取电力工业网络的网络特征信息,并基于所述网络特征信息建立电力工业网络的图网络模型。
23.具体来说,在本步骤100中,获得电力工业网络在网络拓扑构成、网络安全手段、网络传输数据参量方面的网络特征信息。网络拓扑构成包括针对电力工业网络各个系统部分的现场总线节点及其走线路径拓扑的构成,以及工业以太网的以太网节点及其网络路径拓扑的构成;网络安全手段包括在电力工业网络的现场总线节点、以太网节点及其路径拓扑所采用的网络安全手段,包括但不限于冗余备份节点和路径、表决机制、边界安全节点、权限认证机制、过滤机制等;网络传输数据参量包括电力工业网络的现场总线节点、以太网节点及其路径拓扑的传输流量、传输速率、传输延迟、传输波动率、丢包率等描述参数。
24.在本步骤100中,调用图网络基础模型库,构建描述当前电力工业网络的图网络模型。
25.所述图网络基础模型库提供了适用于表征电力工业网络的现场总线节点、以太网节点的节点模型,以及适用于表征电力工业网络的各节点之间拓扑结构的边模型,利用从该图网络基础模型库中调用的所述节点模型和边模型,可以构建仿真当前电力工业网络的完整网络结构的图网络模型。
26.在构建过程中,能够对图网络模型中的每个所述节点模型和边模型的描述参数进行配置。例如,对于表征现场总线节点的节点模型,其描述参数可以包括节点硬件类型、节点协议名和版本号、节点有效数据类型、节点报文收发机制等;对于表征工业以太网节点的节点模型,其描述参数可以包括网络协议名、网络地址信息、节点数据流量信息、节点报文支持长度、节点冗余备份数、节点决策机制等;对于表征节点拓扑结构的边模型,其描述参数可以包括传输流量、传输速率、传输延迟、传输波动率、丢包率等。
27.步骤200:预设安全场景仿真方案,所述安全场景仿真方案包括安全事件响应状态及其扩散机制。
28.本发明的安全场景仿真方案用于定义在特定的安全场景下安全事件响应及其扩散机制的仿真模型。该安全场景仿真方案将所述电力工业网络的图网络模型中的任一节点模型或边模型对安全事件的响应状态定义为:以及;其中,表示本节点模型或边模型并未接收到该安全事件;表示本节点模型或边模型接收到该安全事件并对该安全事件做出正向响应,即本节点模型或边模型能够消除或降低该安全事件的安全风险影响; 表示本节点模型或边模型接收到该安全事件并对该安全事件做出负向响应,即本节点模型或边模型增大了该安全事件的安全风险影响;表示本节点模型或边模型接收到该安全事件,但没有受到该安全事件的影响且没有对该安全事件做出对应的响应。其中,对于响应为的节点模型或者边模型,其也会以概率向与其具有的连接的节点模型和边模型扩散正向响应,而响应为的节点模型或边模型会以概率向与其具有的连接的节点模
型和边模型扩散负向响应,对于响应状态为和的节点模型或边模型则不会扩散其响应状态。
29.对于电力工业网络的图网络模型中的任意一个节点模型或边模型来说——将该节点模型或者边模型标明为模型i,在第t个时间阶段获得其相邻的节点模型或边模型向其扩散的正向响应的概率和负向响应的概率分别为:其中,表示模型i在该电力工业网络的图网络模型中响应为的相邻节点模型或边模型的数量,表示模型i在该电力工业网络的图网络模型中响应为的相邻节点模型或边模型的数量。
30.在第t个时间阶段内,对于响应为的模型来说,如果没有收到扩散的响应,则其仍保持为;如果收到扩散的响应均为,则其响应更新为;如果收到扩散的响应均为,则其响应更新为;如果收到扩散的响应和均有,则其响应更新为。在第t个时间阶段内,对于响应为的模型来说,如果没有收到扩散的响应,则其仍保持为;如果收到扩散的响应均为,则其响应更新为;如果收到扩散的响应均为,则其响应更新为;如果收到扩散的响应和均有,则其响应仍保持为。在第t个时间阶段内,对于响应为的模型来说,如果没有收到扩散的响应,则其仍保持为;如果收到扩散的响应均为,或者收到扩散的响应和均有,则其响应仍保持为;如果收到扩散的响应均为,则其响应更新为。同理,在第t个时间阶段内,对于响应为的模型来说,如果没有收到扩散的响应,则其仍保持为;如果收到扩散的响应均为,或者收到扩散的响应和均有,则其响应仍保持为;如果收到扩散的响应均为,则其响应更新为。同时,响应为,以及的模型,分别以的概率恢复为响应。
31.其中,基于所述公式1和公式2,在第t个时间阶段模型i收到扩散的响应均为的概率表示为:在第t个时间阶段模型i收到扩散的响应均为的概率表示为:在第t个时间阶段模型i收到扩散的响应和均有的概率表示为:
在第t个时间阶段模型i没有收到扩散的响应的概率表示为:从而,以上安全场景仿真方案对电力工业网络的图网络模型中的节点模型和边模型对安全事件的响应状态及反映响应传播机制的概率定义了相关模型。
32.步骤300:根据特定安全场景,将与特定安全场景关联的安全事件输入电力工业网络的图网络模型,并定义所述图网络模型中节点模型和边模型针对所述安全事件的响应状态;根据步骤200中定义的所述安全场景仿真方案,对特定安全场景下所述图网络模型中节点模型和边模型的响应状态进行仿真。
33.具体来说,首先根据拟开展仿真的特定安全场景,定义与该特定安全场景相关联的安全事件输入,并确定在所述电力工业网络的图网络模型中,该安全事件输入所针对的目标节点模型或边模型。
34.进而,参照步骤100中在所述图网络模型中对目标节点模型和边模型的描述参数,确定该目标节点模型和边模型对输入的安全事件的初始响应状态,即上述响应状态中的、或。
35.根据特定安全场景的安全级别要求,对步骤200中以上模型中描述安全事件响应及其扩散机制的传播概率、给予对应的赋值。进而,根据步骤200所定义的安全事件响应的扩散机制,执行预定数量个时间阶段的仿真,从而仿真特定安全场景下对电力工业网络对安全事件输入的响应状态。
36.本发明进而提供了一种面向电力工业网络的安全场景仿真系统,参见图2,包括:图网络模型构建模块,用于获取电力工业网络的网络特征信息,并基于所述网络特征信息建立电力工业网络的图网络模型;安全场景仿真方案构建模块,用于预设安全场景仿真方案,所述安全场景仿真方案包括安全事件响应状态及其扩散机制;安全事件仿真模块,根据特定安全场景,将与特定安全场景关联的安全事件输入电力工业网络的图网络模型,并定义所述图网络模型中节点模型和边模型针对所述安全事件的响应状态;根据定义的所述安全场景仿真方案,对特定安全场景下所述图网络模型中节点模型和边模型的响应状态进行仿真。
37.具体来说,所述图网络模型构建模块用于获得电力工业网络在网络拓扑构成、网络安全手段、网络传输数据参量方面的网络特征信息。网络拓扑构成包括针对电力工业网络各个系统部分的现场总线的节点及其走线路径拓扑的构成,以及工业以太网的以太网节点及其网络路径拓扑的构成;网络安全手段包括在电力工业网络的现场总线节点、以太网节点及其路径拓扑所采用的网络安全手段,包括但不限于冗余备份节点和路径、表决机制、边界安全节点、权限认证机制、过滤机制等;网络传输数据参量包括电力工业网络的现场总线节点、以太网节点及其路径拓扑的传输流量、传输速率、传输延迟、传输波动率、丢包率等描述参数。
38.图网络模型构建模块用于调用图网络基础模型库,构建描述当前电力工业网络的图网络模型。所述图网络基础模型库提供了适用于表征电力工业网络的现场总线节点、以
太网节点的节点模型,以及适用于表征电力工业网络的各节点之间拓扑结构的边模型,利用从该图网络基础模型库中调用的所述节点模型和边模型,可以构建仿真当前电力工业网络的完整网络结构的图网络模型。
39.在构建过程中,图网络模型构建模块能够对图网络模型中的每个所述节点模型和边模型的描述参数进行配置。例如,对于表征现场总线节点的节点模型,其描述参数可以包括节点硬件类型、节点协议名和版本号、节点有效数据类型、节点报文收发机制等;对于表征工业以太网节点的节点模型,其描述参数可以包括网络协议名、网络地址信息、节点数据流量信息、节点报文支持长度、节点冗余备份数、节点决策机制等;对于表征节点拓扑结构的边模型,其描述参数可以包括传输流量、传输速率、传输延迟、传输波动率、丢包率等。
40.所述安全场景仿真方案构建模块用于定义在特定的安全场景下安全事件响应及其扩散机制的仿真模型,该安全场景仿真方案定义了所述电力工业网络的图网络模型中的节点模型和边模型对安全事件的响应状态;并且,对于电力工业网络的图网络模型中的任意一个节点模型或边模型来说,该安全场景仿真方案定义了在第t个时间阶段获得其相邻的节点模型或边模型向其扩散的正向响应的概率和负向响应的概率。
41.安全事件仿真模块根据拟开展仿真的特定安全场景,定义与该特定安全场景相关联的安全事件输入,并确定在所述电力工业网络的图网络模型中,该安全事件输入所针对的目标节点模型或边模型。进而,参照在所述图网络模型中对目标节点模型和边模型的描述参数,确定该目标节点模型和边模型对输入的安全事件的初始响应状态,进而,根据所定义的安全事件响应的扩散机制,执行预定数量个时间阶段的仿真,从而仿真特定安全场景下对电力工业网络对安全事件输入的响应状态。
42.本发明方法及系统适应了电力工业网络高度的时变性、非线性、特异性和其网络安全场景形态多样性的特点,允许构建专门针对电力工业网络的图网络模型,并且建立了针对安全事件输入准确模拟网络的响应状态及其扩散机制的模型,进而通过特定安全场景下的赋值,能够有效对电力工业网络及其网络安全手段的场景适应性展开仿真和评估,从而增加了电力工业网络安全建设的可靠性和预见性。
43.最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域的普通技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离所附权利要求书所限定的本发明的精神和范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1