一种防火铝木饰面板加工质量预测方法、系统及存储介质与流程

文档序号:32996993发布日期:2023-01-18 00:21阅读:48来源:国知局
一种防火铝木饰面板加工质量预测方法、系统及存储介质与流程

1.本发明涉及面板加工预测技术领域,具体是涉及一种防火铝木饰面板加工质量预测方法、系统及存储介质。


背景技术:

2.防火铝木饰面板为在铝板两侧贴合有经过处理的装饰木皮形成的复合型面板板材,为使铝木饰面板具有良好的防火性能,通常需要对两侧的装饰木皮进行防火处理,既通过向装饰木皮中渗透足量的阻燃物质,以使装饰木皮具有一定的阻燃能力来实现,处理过程中,通常需要对装饰木皮进行高温高压处理后进行超声阻燃物质渗透,高温高压处理可使装饰木皮表面的毛孔扩张,以使阻燃物质可以更好的渗透进装饰木皮中。
3.装饰木皮的毛孔扩张程度直接决定着阻燃物质的渗透量,而对于装饰木皮进行毛孔扩张进行微观检测效率极低,因此对每一个经过高温高压的装饰木皮进行毛孔扩张检测是不现实,而现有技术缺乏一套行之有效的针对于装饰木皮的加工质量的预测方法,导致在实际加工过程中,工作人员无法把握防火铝木饰面板加工质量,造成防火铝木饰面板加工良率不稳定,易造成加工资源的浪费。


技术实现要素:

4.为解决上述技术问题,提供一种防火铝木饰面板加工质量预测方法、系统及存储介质,本技术方案解决了上述的现有技术缺乏一套行之有效的针对于装饰木皮的加工质量的预测方法,导致在实际加工过程中,工作人员无法精准的把握防火铝木饰面板加工质量,造成防火铝木饰面板加工良率不稳定,易造成加工资源的浪费的问题。
5.为达到以上目的,本发明采用的技术方案为:一种防火铝木饰面板加工质量预测方法,包括:确定当前加工的面板的防火等级,根据防火等级确定装饰木皮的标准处理工艺参数,所述标准处理工艺参数包括标准处理压力、标准处理温度、标准处理时间和标准渗透超声功率;建立防火铝木饰面板加工质量合格预测模型,所述防火铝木饰面板加工质量合格预测模型以装饰木皮的处理压力完成指标、处理温度完成指标、处理时间完成指标和渗透超声功率完成指标期望值为输入,输出防火铝木饰面板加工合格预测概率;实时监测装饰木皮处理过程中的处理压力、处理温度和处理时间,获得实时处理压力数据、实时处理温度数据和实时处理时间数据;根据实时处理压力数据、实时处理温度数据和实时处理时间数据计算装饰木皮的实时处理压力完成指标、实时处理温度完成指标和实时处理时间完成指标;根据历史加工数据计算获得超声渗透工序步骤中的渗透超声功率完成指标期望值;将装饰木皮的实时处理压力完成指标、实时处理温度完成指标、实时处理时间完
成指标和渗透超声功率完成指标期望值代入防火铝木饰面板加工质量合格预测模型中,获得防火铝木饰面板加工合格预测概率;判断防火铝木饰面板加工合格预测概率是否大于预设值,若是,则判断为合格概率高,进行后续的超声渗透步骤,若否,则判定为合格概率低,进行装饰木皮的返工处理。
6.优选的,所述根据防火等级确定装饰木皮的标准处理工艺参数具体包括如下步骤:根据加工的面板的防火等级,确定装饰木皮的阻燃物质的渗透量;根据阻燃物质的渗透量,确定装饰木皮在超声渗透前的毛孔扩张度,作为标准毛孔扩张度;根据实验数据,确定装饰木皮达到标准毛孔扩张度下的处理压力、处理温度和处理时间,作为装饰木皮的标准处理压力、标准处理温度和标准处理时间;根据实验数据,确定装饰木皮的标准渗透超声功率。
7.优选的,所述建立防火铝木饰面板加工质量合格预测模型具体包括如下步骤:获取防火铝木饰面板历史加工数据;按照是否合格对防火铝木饰面板历史加工数据进行分类,获得若干组合格历史加工数据和不合格历史加工数据;根据历史加工数据进行计算,获得历史加工数据中的历史处理压力完成指标、历史处理温度完成指标、历史处理时间完成指标和历史渗透超声功率完成指标;基于logistic回归模型原理建立预测模型;根据合格历史加工数据和不合格历史加工数据对预测模型中的参数以最大似然法进行参数估计,获得模型回归系数;检验模型回归系数是否满足显著性要求,若不满足则重新进行模型回归系数计算,直至检验模型回归系数满足显著性要求;完成模型求解,获得防火铝木饰面板加工质量合格预测模型。
8.优选的,所述防火铝木饰面板加工质量合格预测模型的表达式为:,式中,g为概率预测模型的预测概率;为处理压力完成指标;为处理温度完成指标;为处理时间完成指标; 为渗透超声功率完成指标; 、、、和均为风险预测模型的系数。
9.优选的,所述处理压力的实时监测方法为:按照预设的时间间隔,装饰木皮处理过程中的压力进行实时检测采集,获得多个实时检测压力数据;所述处理压力完成指标的计算方法为:
式中,为实时检测压力数据; 为标准处理压力;q为实时检测压力数据的数量。
10.优选的,所述处理温度的实时监测方法为:按照预设的时间间隔,装饰木皮处理过程中的温度进行实时检测采集,获得多个实时检测温度数据;所述处理温度完成指标的计算方法为:式中,为实时检测压力数据;为标准处理压力;m为实时检测压力数据的数量。
11.优选的,所述处理时间完成指标的计算方法为:式中,为实际处理时间;为标准处理时间;所述渗透超声功率完成指标的计算方法为:式中,p为实际渗透超声功率;为标准渗透超声功率。
12.优选的,所述渗透超声功率完成指标期望值的计算方法为:获取历史加工数据中,在设定标准渗透超声功率状态下的超声渗透设备在实际加工过程中的渗透超声功率值,获得历史实际渗透超声功率数据;将历史实际渗透超声功率数据按照从小到大的顺序进行排列;确定检出水平α,并根据检出水平确定峰度检验的临界值bp(n);计算每个历史实际渗透超声功率值的峰度检验值bk(n);判断历史实际渗透超声功率值的峰度检验值bk(n)是否大于峰度检验的临界值bp(n),若是,则将历史实际渗透超声功率值剔除,若否,则不做响应;对剩余的历史实际渗透超声功率数据进行求平均值,以该平均值作为渗透超声功率期望值;
采用渗透超声功率期望值进行计算渗透超声功率完成指标期望值;其中,所述历史实际渗透超声功率值的峰度检验值bk(n)的计算公式为:式中,n为渗透超声功率值按照从小到大的排序数; 为历史实际渗透超声功率数据的平均值;为按照从小到大的顺序排列在n之前的渗透超声功率值。
13.进一步的,提出一种防火铝木饰面板加工质量预测系统,用于实现如上述的防火铝木饰面板加工质量预测方法,包括:处理器,处理器用于进行建立防火铝木饰面板加工质量合格预测模型、进行处理工艺参数完成指标的计算、进行渗透超声功率完成指标期望值的计算和进行防火铝木饰面板加工合格预测概率计算;数据接收模块,数据接收模块与所述处理器电性连接,数据处理模块用于接收实时处理压力数据、实时处理温度数据和实时处理时间数据;存储模块,存储模块与所述处理器电性连接,存储模块用于存储历史加工数据和防火铝木饰面板加工质量合格预测模型;数据判断模块,数据判断模块与所述处理器电性连接,数据判断模块用于判断防火铝木饰面板加工合格预测概率是否大于预设值;信号输出模块,信号输出模块与数据判断模块电性连接,信号输出模块用于根据数据判断模块的判断结果输出预测信号。
14.再进一步的,提出一种存储介质,其上存储有计算机程序,所述计算机程序被调用时执行如上述的防火铝木饰面板加工质量预测方法。
15.与现有技术相比,本发明的有益效果在于:本发明提出一种防火铝木饰面板加工质量预测方案,对与装饰木板的毛孔扩张度直接相关的高温高压处理的处理压力、处理温度和处理时间进行检测,并将处理压力、处理温度和处理时间的检测数据进行转换为完成指标,并通过建立防火铝木饰面板加工质量合格预测模型进行预测计算,在当前高温高压处理完成度下的装饰木皮经过超声渗透后能够达到合格标准的概率,并根据该概率判断是否进行超声渗透步骤,此方案不需要进行繁琐的装饰木皮进行毛孔扩张检测,既可以使工作人员把控装饰木皮的加工质量,可有效的提高防火铝木饰面板的加工良率,避免造成加工资源的浪费。
附图说明
16.图1为本方案提出的防火铝木饰面板加工质量预测系统结构框图;图2为本方案提出的防火铝木饰面板加工质量预测方案流程图;图3为本方案中的标准处理工艺参数的确定方法流程图;图4为本方案中的防火铝木饰面板加工质量合格预测模型建立方法流程图;图5为本方案中的渗透超声功率完成指标期望值的计算方法流程图。
具体实施方式
17.以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
18.参照图1所示,一种防火铝木饰面板加工质量预测系统,包括:处理器,处理器用于进行建立防火铝木饰面板加工质量合格预测模型、进行处理工艺参数完成指标的计算、进行渗透超声功率完成指标期望值的计算和进行防火铝木饰面板加工合格预测概率计算;数据接收模块,数据接收模块与处理器电性连接,数据处理模块用于接收实时处理压力数据、实时处理温度数据和实时处理时间数据;存储模块,存储模块与处理器电性连接,存储模块用于存储历史加工数据和防火铝木饰面板加工质量合格预测模型;数据判断模块,数据判断模块与处理器电性连接,数据判断模块用于判断防火铝木饰面板加工合格预测概率是否大于预设值;信号输出模块,信号输出模块与数据判断模块电性连接,信号输出模块用于根据数据判断模块的判断结果输出预测信号。
19.上述防火铝木饰面板加工质量预测系统的工作流程为:s1、处理器从存储模块调取历史加工数据,并根据历史加工数据进行防火铝木饰面板加工质量合格预测模型的计算,并将防火铝木饰面板加工质量合格预测模型存储进存储模块;s2、数据接收模块接收装饰木板高温高压处理过程中实时采集的实时处理压力数据、实时处理温度数据和实时处理时间数据,并输送至处理器;s3、处理器根据实时处理压力数据、实时处理温度数据和实时处理时间数据进行计算实时处理压力完成指标、实时处理温度完成指标、实时处理时间完成指标;s4、处理器根据历史加工数据进行渗透超声功率完成指标期望值计算;s5、处理器从存储模块调取防火铝木饰面板加工质量合格预测模型,并代入实时处理压力完成指标、实时处理温度完成指标、实时处理时间完成指标和渗透超声功率完成指标期望值进行计算防火铝木饰面板加工合格预测概率;s6、数据判断模块将处理器计算出的防火铝木饰面板加工合格预测概率与预设值进行比对,并输出比对结果;s7、信号输出模块根据数据判断模块的比对结果输出预测信号。
20.为进一步的说明本方案,以下提出一种防火铝木饰面板加工质量预测方法,详细说明上述防火铝木饰面板加工质量预测系统的运行方法;参照图2所示,一种防火铝木饰面板加工质量预测方法,包括:确定当前加工的面板的防火等级,根据防火等级确定装饰木皮的标准处理工艺参数,标准处理工艺参数包括标准处理压力、标准处理温度、标准处理时间和标准渗透超声功率;建立防火铝木饰面板加工质量合格预测模型,防火铝木饰面板加工质量合格预测模型以装饰木皮的处理压力完成指标、处理温度完成指标、处理时间完成指标和渗透超声功率完成指标期望值为输入,输出防火铝木饰面板加工合格预测概率;
实时监测装饰木皮处理过程中的处理压力、处理温度和处理时间,获得实时处理压力数据、实时处理温度数据和实时处理时间数据;根据实时处理压力数据、实时处理温度数据和实时处理时间数据计算装饰木皮的实时处理压力完成指标、实时处理温度完成指标和实时处理时间完成指标;根据历史加工数据计算获得超声渗透工序步骤中的渗透超声功率完成指标期望值;将装饰木皮的实时处理压力完成指标、实时处理温度完成指标、实时处理时间完成指标和渗透超声功率完成指标期望值代入防火铝木饰面板加工质量合格预测模型中,获得防火铝木饰面板加工合格预测概率;判断防火铝木饰面板加工合格预测概率是否大于预设值,若是,则判断为合格概率高,进行后续的超声渗透步骤,若否,则判定为合格概率低,进行装饰木皮的返工处理。
21.本方案对与装饰木板的毛孔扩张度直接相关的高温高压处理的处理压力、处理温度和处理时间进行检测,并将处理压力、处理温度和处理时间的检测数据进行转换为完成指标,并通过建立防火铝木饰面板加工质量合格预测模型进行预测计算,在当前高温高压处理完成度下的装饰木皮经过超声渗透后能够达到合格标准的概率,并根据该概率判断是否进行超声渗透步骤,可有效的避免高温高压处理不达标的装饰木板进行后续的超声渗透步骤,进而有效的防止了后续的加工资源的浪费。
22.参照图3所示,根据防火等级确定装饰木皮的标准处理工艺参数具体包括如下步骤:根据加工的面板的防火等级,确定装饰木皮的阻燃物质的渗透量;根据阻燃物质的渗透量,确定装饰木皮在超声渗透前的毛孔扩张度,作为标准毛孔扩张度;根据实验数据,确定装饰木皮达到标准毛孔扩张度下的处理压力、处理温度和处理时间,作为装饰木皮的标准处理压力、标准处理温度和标准处理时间;根据实验数据,确定装饰木皮的标准渗透超声功率。
23.在实际进行装饰木皮的加工之前,需要通过实验的方式进行装饰木皮的标准处理工艺参数的计算,以获得当前装饰木皮加工的标准工艺参数,并以此标砖工艺参数作为后续加工检测过程中的计算标准。
24.参照图4所示,建立防火铝木饰面板加工质量合格预测模型具体包括如下步骤:获取防火铝木饰面板历史加工数据;按照是否合格对防火铝木饰面板历史加工数据进行分类,获得若干组合格历史加工数据和不合格历史加工数据;根据历史加工数据进行计算,获得历史加工数据中的历史处理压力完成指标、历史处理温度完成指标、历史处理时间完成指标和历史渗透超声功率完成指标;基于logistic回归模型原理建立预测模型;根据合格历史加工数据和不合格历史加工数据对预测模型中的参数以最大似然法进行参数估计,获得模型回归系数;检验模型回归系数是否满足显著性要求,若不满足则重新进行模型回归系数计算,直至检验模型回归系数满足显著性要求;
完成模型求解,获得防火铝木饰面板加工质量合格预测模型。
25.防火铝木饰面板加工质量合格预测模型的表达式为:,式中,g为概率预测模型的预测概率;为处理压力完成指标;为处理温度完成指标; 为处理时间完成指标;为渗透超声功率完成指标; 、、、和均为风险预测模型的系数。
26.本方案中的防火铝木饰面板加工质量合格预测模型基于logistic回归模型原理进行计算,logistic回归模型是一种广义的线性回归分析模型,常用于数据挖掘,结果预测等领域;本方案中,基于logistic回归模型原理建立的防火铝木饰面板加工质量合格预测模型可根据实际检测的的实时处理压力完成指标、实时处理温度完成指标、实时处理时间完成指标,以及超声渗透装置在实际的使用过程中实际超声功率进行计算防火铝木饰面板加工质量合格概率预测,为后续的加工步骤提供了数据支撑。
27.处理压力的实时监测方法为:按照预设的时间间隔,装饰木皮处理过程中的压力进行实时检测采集,获得多个实时检测压力数据;处理压力完成指标的计算方法为:式中,为实时检测压力数据;为标准处理压力;q为实时检测压力数据的数量。
28.处理温度的实时监测方法为:按照预设的时间间隔,装饰木皮处理过程中的温度进行实时检测采集,获得多个实时检测温度数据;处理温度完成指标的计算方法为:式中,为实时检测压力数据;
为标准处理压力;m为实时检测压力数据的数量。
29.处理时间完成指标的计算方法为:式中,为实际处理时间;为标准处理时间;渗透超声功率完成指标的计算方法为:式中,p为实际渗透超声功率;为标准渗透超声功率。
30.本方案中将防火铝木饰面板加工过程中的装饰木皮的处理压力、处理温度、处理时间和渗透超声功率作为检测指标,并将检测到的数值与标准的数值进行比对,并转化成完成指标,以数值的状态直观的表示处理压力、处理温度、处理时间和渗透超声功率在实际加工过程中的完成度,并根据实际加工过程中的完成度进行后续的合格概率预测。
31.参照图5所示,渗透超声功率完成指标期望值的计算方法为:获取历史加工数据中,在设定标准渗透超声功率状态下的超声渗透设备在实际加工过程中的渗透超声功率值,获得历史实际渗透超声功率数据;将历史实际渗透超声功率数据按照从小到大的顺序进行排列;确定检出水平α,并根据检出水平确定峰度检验的临界值bp(n);计算每个历史实际渗透超声功率值的峰度检验值bk(n);判断历史实际渗透超声功率值的峰度检验值bk(n)是否大于峰度检验的临界值bp(n),若是,则将历史实际渗透超声功率值剔除,若否,则不做响应;对剩余的历史实际渗透超声功率数据进行求平均值,以该平均值作为渗透超声功率期望值;采用渗透超声功率期望值进行计算渗透超声功率完成指标期望值;其中,历史实际渗透超声功率值的峰度检验值bk(n)的计算公式为:式中,n为渗透超声功率值按照从小到大的排序数;为历史实际渗透超声功率数据的平均值; 为按照从小到大的顺序排列在n之前的渗透超声功率值。
32.由于在实际的加工过程中,存在着加工环境的干扰,因此超声渗透设备的实际输出的超声功率会与设定的标准渗透超声功率存在的一定的波动误差,本方案中采用峰度检验对历史加工数据中的渗透超声功率进行离群点剔除,保留下可以真实反映超声渗透设备实际加工时的超声渗透功率数据进行渗透超声功率期望值的计算,使得渗透超声功率期望
值可以降低异常加工状态的影响,更加真实的反映出超声渗透设备的工作状态,并依次状态进行计算渗透超声功率完成指标期望值的计算,可以准确的计算预测出防火铝木饰面板加工质量合格概率。
33.进一步的,本方案还提出一种存储介质,其上存储有计算机程序,计算机程序被调用时执行如上述的防火铝木饰面板加工质量预测方法;可以理解的是,存储介质可以是磁性介质,例如,软盘、硬盘、磁带;光介质例如,dvd;或者半导体介质例如固态硬盘solidstatedisk,ssd等。
34.综上所述,本发明的优点在于:本方案对与装饰木板的毛孔扩张度直接相关的高温高压处理的处理压力、处理温度和处理时间进行检测,不需要进行繁琐的装饰木皮进行毛孔扩张检测,既可以使工作人员把控装饰木皮的加工质量,可有效的提高防火铝木饰面板的加工良率,避免造成加工资源的浪费。
35.以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1