一种基于动态变异策略的群体全局优化方法

文档序号:8943276阅读:530来源:国知局
一种基于动态变异策略的群体全局优化方法
【技术领域】
[0001] 本发明涉及一种智能优化、计算机应用领域,尤其涉及的是,一种基于动态变异策 略的群体全局优化方法。
【背景技术】
[0002] 全局优化作为最优化学科领域中一个独立的学科分支,已成为人们研究实际问题 时进行建模和分析的重要手段之一。在科学、经济和工程设计中,如生物信息学、机械设计、 化学工程设计和控制、环境工程、以及图形处理等,许多进展都依赖于计算相应的优化问题 的全局最优解的数值技术。同时,随着工程优化问题的日趋复杂,优化问题的目标函数的性 态也变得越来越复杂,通常是不连续、不可微、高度非线性的,没有明确的解析表达式,且具 有多个峰值、多目标的特征。因此,解决常规的优化问题已成为计算机科学和优化领域的一 个挑战性课题。
[0003] 进化算法作为全局优化的一个分支,是基于自然选择和自然遗传等生物进化机制 的一种搜索算法,已成功地用于求解各种优化问题。典型的进化算法有差分进化算法(DE)、 遗传算法(GA)、进化策略(ES)、进化规划(EP)以及粒子群算法(PSO)等,这些算法不需要 导数信息,对函数的性态没有要求,而且适用范围广、鲁棒性强。Storn和Price提出的差 分进化算法作为一种随机性算法,已经被证明是进化算法中简单而最高效的算法,在很多 领域得到了广泛应用。DE算法通过群体内个体间的合作与竞争产生的群体智能指导优化搜 索,具有算法通用,不依赖于问题信息,原理简单,易于实现,记忆个体最优解和种群内信息 共享以及较强的全局收敛能力等特点。因此,DE算法在电力系统、通信、化工、光学及机械 工程等领域的广泛应用中展现出了其独特的优势,但在理论和应用中也暴露出诸多不足和 缺陷:(1)贪婪选择策略加快了算法的收敛速度,但是也使其极易陷入局部最优而降低可 靠性;(2)求解时需要大量的函数评价次数而导致计算代价较高;(3)全局探测能力较强, 但是局部搜索能力较弱,后期收敛速度较慢。
[0004] 为了提高DE算法的性能,Ali等通过在DE算法的变异过程加入锦标赛机制提 出一种改进DE算法(DERL),同时在选择环节引入反射和收缩算子提出另一种改进DE算 法(DELB),从而降低算法的计算代价。Bhattacharya等提出一种基于生物地理学优化算 法(BBO)的混合DE算法(DE/BB0),利用BBO算法的迀移操作来指导DE算法变异产生新个 体,即对较优个体进行保存,从而通过较差个体接受较优个体的新特性的方式使得当前种 群得到充分探测,以提高算法的全局搜索能力,同时加快算法的收敛速度。Cai等提出一种 基于近邻信息和方向信息的差分进化算法(NDi-DE),在变异过程中,利用个体的近邻信息 选择父代个体,同时利用一种包含方向的变异策略自适应的获取近邻个体的方向信息,从 而在搜索过程中,不仅能够快速的定位极小值区域,加快算法的收敛速度,而且能够防止个 体落入无效区域。Wang等提出一种具有复合新个体生成策略和控制参数的差分进化算法 (CoDE),在算法中分别设置一个策略池和一个参数池,通过策略池中不同的生成策略与参 数池中不同的控制参数随机组合来竞争产生新个体,从而改善DE算法的性能。上述改进算 法取得了一定的效果,但是对于实际应用中的一些大规模优化问题,由于其目标函数曲面 极其粗糙复杂,因此,对于上述改进算法,计算代价和收敛速度仍然是算法的瓶颈所在,而 且也极容易出现早熟收敛。
[0005]因此,现有的基于群体进化算法的全局优化方法在计算代价和收敛速度方面存在 着缺陷,需要改进。

【发明内容】

[0006] 为了克服现有的基于群体进化算法的全局优化方法计算代价较高和收敛速度较 慢的不足,本发明提出一种计算代价较低、收敛速度快的基于动态变异策略的群体全局优 化方法。
[0007] 本发明解决其技术问题所采用的技术方案是:
[0008] -种基于动态变异策略的群体全局优化方法,所述方法包括以下步骤:
[0009] 1)初始化:设置种群规模NP,初始交叉概率Cr,初始增益常数F ;
[0010] 2)随机生成初始种群P= {^?丨...,产8},并计算出各个体的目标函数值,其 中,进化代数g = 〇, X1丨i = 1,2,…,Np表示第g代种群中的第i个个体;
[0011] 3)根据公式⑴计算出初始种群中各个体之间的平均距离dinitlal;
[0012]
(1)
[0013] 其中,表示第g代种群中第i个个体X μ的第j维元素,表示第g代种群中 第k个个体X k>g的第j维元素,N为问题维数,N P为种群规模;
[0014] 4)根据公式⑴计算出当前种群中各个体之间的平均距离daTC;
[0015] 5)对种群中的每个个体根据式(2)进行变异:
[0016]
[0017] 其中,j = 1,2,…,N,N为问题维数,g为进化代数,a,b,c e {1,2,...,NP}, a辛b辛c #i,i为当前目标个体的索引,为第g代种群中第i个目标个体的变异个体 的第j维元素,;fg、@气分别为第g代种群中第a、b、c个个体的第j维元素,为 当前第g代种群中的最优个体的第j维元素,F表示增益常数,F = N(0. 5, 0. 3),N(0. 5, 0. 3) 表不均值为0. 5,标准偏差为0. 3的正态分布随机数;
[0018] 6)根据公式(3)对每个变异个体进行交叉生成新个体trial1>g:
[0019]
[0020] 其中,j = 1,2,···,Ν,〖Γ/α/ρ表示第g代种群中第i个目标个体对应的新个体 trials的第j维元素,randb(0, 1)表示为随机产生0到1之间的小数,rnbr(j)表示随机 产生1到N之间的整数,C/表示第g代中第i个个体的交叉概率,可根据公式(4)求得;
[0021]
[0022] 其中,C^f1表示第g+Ι进化代数中第i个目标个体的交叉概率,N(0. 5, 0. 1)表示 生成均值为〇. 5,标准偏差为0. 1的正态分布随机数;公式(4)表明,如果第g代的交叉概 率C/产生的新个体优于目标个体,则在第g+Ι代时保持交叉概率不变,否则重新生成;
[0023] 7)根据公式(5)对每个新个体进行种群更新:

,公式(5)表明,如果新个体优于目标个体,则新个体替换目标个体,否则 保持目标个体不变;
[0026] 8)判断是否满足终止条件,如果满足,则保存结果并退出,否则返回步骤4)。
[0027] 进一步,所述步骤8)中,终止条件为函数评价次数。当然,也可以为其他终止条 件。
[0028] 本发明的技术构思为:首先,计算出初始种群中各个体之间的初始平均距离,并根 据初始平均距离将整个进化算法分为三个阶段;然后,在进化过程中根据当前种群个体的 拥挤程度,即各个体之间的平均距离判断算法所处的阶段,从而对每个阶段使用不同的变 异策略来产生新个体;其次,对参数使用自适应调整策略;通过以上设计,从整体上降低算 法的计算代价,并加快算法的收敛速度。
[0029] 本发明的有益效果表现在:根据个体的平均距离来判断算法所处的阶段,对各阶 段采用合适的变异策略来产生新个体,同时采用参数自适应机制,从而降低算法的计算代 价,同时加快算法的收敛速度。
【附图说明】
[0030] 图1是基于动态变异策略的群体全局优化方法的基本流程图。
[0031] 图2是阶段性动态变异策略的群体全局优化方法对30维Ackley优化求解时的平 均收敛曲线图。
【具体实施方式】
[0032] 下面结合附图对本发明作进一步描述。
[0033] 参照图1~图2,一种基于动态变异策略的群体全局优化方法,包括以下步骤:
[0034] 1)初始化:设置种群规模NP,初始交叉概率Cr,初始增益常数F ;
[0035] 2)随机生成初始种群P= {^?丨...,产8},并计算出各个体的目标函数值,其 中,进化代数g = 0, X1丨i = 1,2, ···,Np表示第g代种群中的第i个个体;
[0036] 3)根据公式⑴计算出初始种群中各个体之间的平均距离dinitlal;
[0037]
[0038] 其中,表示第g代种群中第?个个体X w的第·?维元素,表示第g代种群 中第k个个体X 的第j维元素,N为问题维数,Np为种群规模;
[0039] 4)根据公式(1)计算出当前种群中各个体之间的平均距离daTC;
[0040] 5)对种群中的每个个体根据式⑵进行变异:
[0041]
[0042] 其中,j = 1,2,…,N,N为问
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1