基于专家系统和战术战法分形化的空战战术团队仿真方法

文档序号:9911395阅读:1613来源:国知局
基于专家系统和战术战法分形化的空战战术团队仿真方法
【技术领域】
[0001]本发明涉及作战仿真技术领域,具体涉及一种基于专家系统和战术战法分形化的空战战术团队仿真方法,该方法构建了蓝方虚拟智能战术团队,实现了“人-机”战术对抗。
【背景技术】
[0002]现代空战的基本样式是编队空战,双、四机编队是基本的战斗队形。在利用仿真系统进行空战战术模拟训练时,出现两种情况:一是不可能一次配备太多的人在回路仿真器;二是飞行员在驾驶不熟练的机种进行仿真对抗时,不能真正体现模拟对抗效果和武器作战效能。如需要展开针对F22的战法研究,普通飞行员驾驶F22战机模拟器,由于不掌握F22飞机的性能和战术,无法真正发挥其作战效能,达不到对抗的效果。本申请提出解决此问题的方法是:构建蓝方虚拟智能战术团队,该团队代表了空战战术模拟训练时蓝方的整体作战力量(包括飞行员、指挥员、其它战勤人员、及相关战术战法应用等)。不是I对I的简单对抗,而是团队与团队之间的多对多的对抗。
[0003]因此,构建蓝方虚拟智能战术团队就涉及到虚拟飞机、虚拟指挥、战术战法知识处理与仿真应用等多方面仿真技术。在虚拟飞机方面,目前主要有两种方法:一是兵力生成技术可以实现多架虚拟飞机,但这些飞机是按照事先规划方案运行,没有智能对抗功能;二是单架虚拟飞机实现技术,方法比较多,都是针对敌我双方的位置进行优化,以达到最佳态势,实施攻击,但是这些技术和方法没有考虑到多机协同作战的情况,无法实现多架飞机的协同作战。

【发明内容】

[0004]针对【背景技术】中存在的问题,本发明的目的在于提供一种基于专家系统和战术战法分形化的空战战术团队仿真方法,运用该方法建立蓝方虚拟智能战术团队,红方空战模拟训练人员只须在已方飞机仿真平台上操作与指挥,就能自动实现与对手的全过程空战仿真对抗训练,既减少硬件规模,又能提高训练难度。
[0005]本发明的目的是通过以下技术方案来实现的:
[0006]基于专家系统和战术战法分形化的空战战术团队仿真方法,所述空战战术团队仿真方法包括如下步骤:
[0007]I)应用知识建立、知识表示与处理的数学方法,进行仿真建模,每一个战术和战法都对应地转化为一个数据集,将各数据集按类型和特征,以库或子库的方式存储调用;
[0008]2)采用分形理论、人工智能和专家系统,对多项基本战术和战法进行分形,构建分形战法库;
[0009]3)对空战对抗中的主要因素进行分析,研究相互之间的关系,研究出多种指标对应的模型,建立一套评价战术团队作战效能的战术指标体系,作为推理和学习的依据;
[0010]4)建立空战知识自学习机制,不断丰富以空战态势为特征的空战态势知识库,空战知识自学习机制采用一种“先验” + “后验”模式的学习机制,依据综合战术评估指标体系,通过学习,不断丰富知识库和规则库;
[0011]5)应用人工智能技术建立战法推理机制,使用已经建立的战术评价指标体系,并与当前态势相关联,自动优化选择下一步该如何采取对抗行动,既当前的战术还是更换新战术;
[0012]6)战法重构:即实现战术与战术或战法与战法之间的平滑过渡。
[0013]进一步,构建步骤2)中所述分形战法库的方法具体为:以时间分段取样法为基础,舍去红蓝双方空战初始时的巡航时间,从一方发现对方开始,将战法过程分形化处理,采用动态步长记录,在武器截获目标前后分别按5秒或I秒为一个战法分形基准时间,将一个战法分为若干个分形子战法,每个子战法的构成元素如下:
[0014]飞机状态集:{机型,数量,编号,时间,位置姿态,速度,雷达状态,干扰状态};
[0015]导弹状态集:{型号,时间,位置姿态,速度};
[0016]将子战法录入特征库保存,从而构成一个分形战法库。
[0017]进一步,步骤6)中所述战法重构具体为:按照当前的空中态势,经过推理判断,保持或更换战法,按指令从所述分形战法库中读取当前数据,通过两点间的常规飞行方程解算,平滑过渡到下一时刻的战法。
[0018]进一步,建立步骤3)中评价战术团队作战效能的战术指标体系的方法具体为:对空战对抗中的主要因素进行分析,研究相互之间的关系,并研究多种指标的模型,建立一套评价“虚拟飞行员”战术指标体系:{飞机被探测概率、截获概率、持续跟踪时间、毁伤概率、逃生概率、战损、武器交换比、干扰概率、抗干扰概率};以这些指标作为进行推理和学习的依据。
[0019]进一步,步骤4)中的所述空战知识自学习机制具体为:所述空战知识自学习机制采用一种“先验” + “后验”模式的学习机制,先获取空战双方的态势,采用人机结合的方式,对态势进行分析,根据专家知识和已有的规则判断,从有限的动作行为库中获取当前的动作,然后对这样的动作进行预先综合评估,如果满足条件,达到最优,则作为一条肯定的知识存储到库中,如果不满足条件,也进行学习记录,然后更换另外一个行为动作,达到最优为止,如果都没有达到最优,就从使用过的动作中的最优动作,形成一条新的知识存放在库中。
[°02°]进一步,建立步骤5)中的所述战法推理机制具体为:
[0021 ]针对分形战法库,战法指令设计为:
[0022 ] f<In+i,An+1,Tn+1> = f(ln,An,Tn,红方态势)
[0023]其中:
[0024]In、In+1分别表示前、后时刻或时间步队形参数;
[0025]An、An+1分别表示前、后时刻或时间步飞机状态参数;
[0026]Tn、Tn+1分别表示前、后时刻或时间步态势参数;
[0027]上述函数主要完成根据现在队形、位置和敌方的态势解算新的队形,在队形上影响Ιη+1,具体为:
[0028]按照现有的计算方法解算飞机毁伤情况,在数量上影响Ιη+1;
[0029]按照毁伤情况,是否更换长机编号;
[0030]根据在Ιη+1和1?+1明确、队形不定情况下,在分形战法库查讯到的多个Αη+1进一步处理,取和An距离最近的An+1,构建新的队形。
[0031]本发明具有以下积极的技术效果:
[0032]运用本申请所公开的方法建立蓝方虚拟智能战术团队,红方空战模拟训练人员只须在已方飞机仿真平台上操作与指挥,就能自动实现与对手的全过程空战仿真对抗训练,既减少硬件规模,又能提高训练难度。
【附图说明】
[0033]图1是本发明的虚拟战术团队仿真原理框图;
[0034]图2是本发明的战术团队自主学习模型;
[0035]图3是本发明的战法知识库框图;
[0036]图4是本发明的推理专家系统流程框图。
【具体实施方式】
[0037]下面,参考附图,对本发明进行更全面的说明,附图中示出了本发明的示例性实施例。然而,本发明可以体现为多种不同形式,并不应理解为局限于这里叙述的示例性实施例。而是,提供这些实施例,从而使本发明全面和完整,并将本发明的范围完全地传达给本领域的普通技术人员。
[0038]为了易于说明,在这里可以使用诸如“上”、“下”“左” “右”等空间相对术语,用于说明图中示出的一个元件或特征相对于另一个元件或特征的关系。应该理解的是,除了图中示出的方位之外,空间术语意在于包括装置在使用或操作中的不同方位。例如,如果图中的装置被倒置,被叙述为位于其他元件或特征“下”的元件将定位在其他元件或特征“上” O因此,示例性术语“下”可以包含上和下方位两者。装置可以以其他方式定位(旋转90度或位于其他方位),这里所用的空间相对说明可相应地解释。
[0039]如图1所示,本申请的基于专家系统和战术战法分形化的空战战术团队仿真方法包括如下步骤:
[0040]1.梳理、分析、取舍和归纳总结战法,应用知识建立、知识表示与处理的数学方法,进行仿真建模,每一个战术和战法都对应地转化为一个数据集,各数据集按类型和特征,以库或子库的方式存储调用。
[0041]2.采用分形理论、人工智能和专家系统,对多项基本战术和战法进行分形,构建分形战法库。
[0042]3.对空战对抗中的主要因素进行分析,研究相互之间的关系,研究出多种指标的对应的模型,建立一套评价战术团队作战效能的战术指标体系,作为推理和学习的依据。
[0043]4.建立空战知识自学习机制,不断丰富以空战态势为特征的空战态势知识库(规则库),空战知识自学习机制采用一种“先验” + “后验”模式的学习机制,依据综合战术评估指标体系,通过学习,不断丰富知识库和规则库。
[0044]5.应用人工智能技术建立战法推理机制,使用已经建立战术评价指标体系,并与当前态势相关联,对自动优化选择下一步该如何采取对抗行动,既当前的战术还是更换新战术。
[0045]6.战法重构,实现战术(战法)与战术(战法)之间的平滑过渡。
[0046]通过以上步骤,按照图1的主要基本程序运行流程,构建出具有一定智能的空战战术团队对手。
[0047]虚拟战术团队仿
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1