基于线性扩散板与反射分量分离理论的高光去除方法
【技术领域】
[0001] 本发明属于三维结构光测量领域,具体涉及一种基于线性扩散板与反射分量分离 理论的高光去除方法。
【背景技术】
[0002] 上世纪70年代以来,编码光三维测量技术在高速检测、产品开发、质量控制、反求 工程等领域得到广泛的应用和发展,其具有高精度、高效率、非接触等优点。在编码光三维 测量中,需要在物体表面投射条纹,条纹携带了物体表面的三维信息,条纹的灰度变化反映 了物体表面轮廓的变化。然而在实际工业测量中,条纹截面的灰度变化会受到很多因素的 干扰,其中高光是影响最为强烈的一个因素。高光的存在不仅可能会使相机饱和,丢失条纹 灰度变化信息,而且还将改变原有漫反射条纹的灰度分布,从而影响条纹中心提取的准确 性。去高光问题目前已是利用光学方法测量金属陶瓷等强反射物体所面临的一个难点与共 性问题。
[0003] 现有的基于漫反射与镜面反射的分离高光抑制方法中,双色模型只适用于非导体 材质,不适用于金属表面。极化方法在入射角接近90度时,金属表面的菲涅耳系数才有少许 变化,易造成相机的饱和。而在避免和减少镜面反射方法中,单独使用多光源、多角度、多曝 光、喷雾法、光度学等方法仍然存在着高光区域重叠部分不能完全去除、不能满足测量的精 度需求、对金属表面造成腐蚀等问题。总之,在编码光三维测量领域,现有的方法仍然无法 克服高光成分对三维重构的影响。
【发明内容】
[0004] 针对上述问题,本发明公开了一种基于线性扩散板与反射分量分离理论的高光去 除方法,该方法将线性扩散板与反射分量分离理论进行软硬有机结合,使二者彼此支持,实 现线性扩散板或反射分量分离理论单独存在时,都不具有的抑制高光的作用,从而降低高 光部分对三维重构的影响。
[0005] 本发明的目的是这样实现的:
[0006] 基于线性扩散板与反射分量分离理论的高光去除方法,包括以下步骤:
[0007] 步骤a、在投影仪与被测物之间加入线性扩散板;
[0008] 步骤b、建立待处理图像信息模型;
[0009] 步骤c、建立待处理图像漫反射与强反射色度模型;
[0010]步骤d、建立归一化图像模型;
[0011] 步骤e、建立非强反射图像模型;
[0012] 步骤f、确定强反射像素点;
[0013] 步骤g、处理强反射像素区域。
[0014] 上述基于线性扩散板与反射分量分离理论的高光去除方法,步骤b到步骤g具体 为:
[0015] 步骤b、建立待处理图像信息模型
[0016] 待处理图像表示为:
[0017] Αι?(Χ)=α(Χ)]·ΩΤ(λ,Χ)Β(λ)ρκ(λ)(1λ+β(Χ)]·ΩΒ(λ)ρ κ(λ)(1λ
[0018] Αο(Χ)=α(Χ)ΙΩΤ(λ,Χ)Β(λ)ρ0(λ)?λ+β(Χ)ΙΩΒ(λ)ρ〇(λ)?λ
[0019] ΑΒ(Χ)=α(Χ)]·ΩΤ(λ,Χ)Β(λ)ρΒ(λ)(1λ+β(Χ)]·ΩΒ(λ)ρ Β(λ)(1λ
[0020] 其中,Α(Χ)为图像强度,α(χ)为漫反射加权因子,β(Χ)为强反射加权因子,Χ={χ, y}为像素点坐标,Τ(λ,Χ)为漫反射功率谱,Β(λ)为强反射功率谱,Q(A)为传感器灵敏度,下 角标R、G、B分别表示图像的红色通道、绿色通道、以及蓝色通道;
[0021] 令:
[0022] DR(X) = ^T(A,X)B(A)QR(A)dA
[0023] Dg(X) = JqT(A,X)B(A)Qg(A)cIA
[0024] DB(X) = jQT(A,X)B(A)QB(A)dA
[0025] SR = ^B(A)QR(A)dA
[0026] Sg = JqB(A)Qg(A)cIA
[0027] SB = ^B(A)QB(A)dA
[0028] 有:
[0029] AR(X)=a(X)DR(X)+e(X)SR
[0030] AG(X)=a(X)DG(X)+P(X)SG
[0031] AB(X)=a(X)DB(X)+P(X)SB
[0032] 步骤c、建立待处理图像漫反射与强反射色度模型 [0033]定义图像色度为:
[0037]在像素中只有漫反射的条件下,β(Χ)=0,此像素的色度表达式为:
[0041] 在像素中只有强反射的条件下,α(Χ)=0,此像素的色度表达式为:
[0042] - ?
[0043]
[0044]
[0045] 此时有:
[0046] AR(X)=md(X)MR(X)+ms(X)K R
[0047] AG(X)=md(X)MG(X)+ms(X)KG
[0048] AB(X)=md(X)MB(X)+ms(X)KB
[0049] 其中,md(X)MR(X)、md(X)MG(X)、md(X)M B(X)为漫反射分量,ms(X)KR、ms(X)K G、ms(X)KB 为强反射分量,并且有:
[0050] md(X) =a(X) [Dr(X)+Dg(X)+Db(X)]
[0051] ms(X)=P(X)(SR+SG+SB)
[0052] 步骤d、建立归一化图像模型
[0053] 归一化的图像可以表示为:
[0054] Ar7 (X)=Ar(X)/Kr/
[0055] A/g(X)=Ag(X)/K/g
[0056] Ab7 (X)=Ab(X)/Kb/
[0057] 其中,A' (X)为归一化的图像强度,f为强反射分量的色度估计值;
[0058]步骤e、建立非强反射图像模型
[0059] 定义经过颜色补偿之后的图像为非强反射图像,定义式如下:
[0060] = ,XX)
[0061] Ai;{X)^niri{X)M,;{X)
[0062] :1(^) = /^(^)^(^)
[0063]其中,為Z)为非强反射图像的强度,汾(A1为非强反射图像的漫反射色度,九为 非强反射图像的漫反射加权因子;
[0064]步骤f、确定强反射像素点 [0065]步骤Π 、确定非漫反射像素
[0066] 的log(.4f〇)>-部〇g()(义)))讀的像素为非漫反射像素,其中,d()为导数微分运 算,l〇g()为取对数运算;
[0067] 步骤f2、判断以下条件是否同时满足:
[0068] AR = !'RiX)-I'RiX ~\)>R
[0069] Δ6 =4(J〇-4(Z -1)>G
[0070] Δ, = /;(Α,)-/;(A,-1)>5
[0071] 如果满足,步骤f结束;
[0072]如果不满足,进入步骤f3;
[0073] 步骤f3、判断以下条件是否满足:
[0074] max(KR(X)、Kg(X)、Kb(X) ) =max(KR(X_l)、Kg(X_1 )、Kb(X_1 ))
[0075] 如果满足,则像素 X为噪声像素;
[0076] 如果不满足,则像素 X为强反射像素;
[0077]按照此步骤将所有像素处理完毕,即可标记出被测图像中所有强反射像素区域 Ω ;
[0078]步骤g、处理强反射像素区域
[0079] 步骤gl、根据强反射像素区域Ω,按照以下公式确定源区域Φ :
[0080] Φ=Α(Χ)-Ω
[0081] 进而确定强反射像素区域Ω与源区域Φ的边界〇Ω ;
[0082] 步骤g2、边界σ Ω上的每个像素点〇对应一个采样模块φ。,计算边界σ Ω上每一个像 素点〇的优先级Ρ(〇),对于区域Φ。:其优先级可以表示为:
[0083] P(〇)=C(o)XD(o)
[0084] 其中,C(o)为置信度,D(o)为数据项,并且有:
[0085]
[0086]
[0087]其中,|也|是采样窗口Φ。的面积,α为规范化因子,丄代表正交操作;η。是点〇正交于 边界σ Ω的单位正交向量,是〇点处的照度;
[0088]步骤g3、寻找满足以下公式的像素:
[0089]
[0090] 其中,^、声、q均为像素点,心为优先级最尚的米样模块,表不优先级 最高的采样模块与采样模块%的像素的平方差的和,%为满足条件的源模块;在找到符 合条件的源模块力后,用源模块&中的像素点按照对应关系代替模块的像素点;反复 迭代,直到强反射像素区域Ω都处理完毕。
[0091] 有益效果:本发明将线性扩散板与反射分量分离理论进行软硬有机结合,使二者 彼此支持,实现线性扩散板或反射分量分离理论单独存在时,都不具有的抑制高光的作用, 从而降低高光部分对三维重构的影响。
【附图说明】
[0092] 图1是在投影仪与被测物之间加入线性扩散板的原理图。
[0093] 图2是在投影仪与被测物之间加入线性扩散板的实物图。
[0094]图3是大理石捣蒜罐照片。
[0095]图4是未加入线性扩散板条件下的大理石捣蒜罐三维重构图。
[0096]图5是加入线性扩散板条件下的大理石捣蒜罐三维重构图。
[0097]图6是本发明方法得到的大理石捣蒜罐三维重构图。
【具体实施方式】
[0098]下面结合附图对本发明【具体实施方式】作进一步详细描述。
[0099]本实施例的基于线性扩散板与反射分量分离理论的高光去除方法,包括以下步 骤:
[0100]步骤a、在投影仪与被测物之间加入线性扩散板,原理图如图1所示,实物图如图2 所示;
[0101]步骤b、建立待处理图像信息模型 [0102] 待处理图像表示为:
[0103] Αι?(Χ)=α(Χ)]·ΩΤ(λ,Χ)Β(λ)ρκ(λ)(1λ+β(Χ)]·ΩΒ(λ)ρ κ(λ)(1λ
[0104] Αο(Χ)=α(Χ)ΙΩΤ(λ,Χ)Β(λ)ρ0(λ)?λ+β(Χ)ΙΩΒ(λ)ρ〇(λ)?λ
[0105] ΑΒ(Χ)=α(Χ)]·ΩΤ(λ,Χ)Β(λ)ρΒ(λ)(1λ+β(Χ)]·ΩΒ(λ)ρ Β(λ)(1λ
[0106] 其中,Α(Χ)为图像强度,α(Χ)为漫反射加权因子,β(Χ)为强反射加权因子,Χ={χ, y}为像素点坐标,Τ(λ,Χ)为漫反射功率谱,Β(λ)为强反射功率谱,Q(A)为传感器灵敏度,下 角标R、G、B分别表示图像的红色通道、绿色通道、以及蓝色通道;
[0107] 令:
[0108] DR(X) = ^T(A,X)B(A)QR(A)dA
[0109] Dg(X) = JqT(A,X)B(A)Qg(A)cIA
[0110] 〇Β(χ)=?ΩΤ(λ,χ)Β(λ)ρΒ(λ)(?λ
[0111] Sr = !ΩΒ(λ)(^(λ)(1λ
[0112] Sg = JqB(A)Qg(A)cIA
[0113] Sb = JqB(A)Qb(A)cIA
[0114] 有:
[0115] AR(X)=a(X)DR(X)+e(X)SR
[0116] AG(X)=a(X)DG(X)+0(X)SG
[0117] AB(X)=