多像素雪崩光电二极管的制作方法与工艺

文档序号:12201720阅读:182来源:国知局
多像素雪崩光电二极管相关申请的交叉引用本申请要求2013年8月13日申请的美国临时申请案号61/865,503的权益,所述申请出于所有目的以引用的方式整体并入本文。技术领域本公开涉及半导体装置,更具体来说,涉及具有光信号的内部放大的半导体雪崩光电二极管。

背景技术:
光敏半导体装置在众多科学和家用装置中用于检测和处理光学信息。这类装置的关键元件是将光学信息转换成电信号的光电二极管。光敏性和快速响应时间是光电二极管的基本工作参数。常规地,在这类光学装置中使用真空光电倍增器。然而,也已开发出可替代真空光电倍增器的半导体光电倍增器或多像素雪崩光电二极管(MAPD)(也称为多像素光子计数器(MPPC)或硅光电倍增器(SiPM))。例如,俄罗斯专利1702831教导硅基板表面,所述硅基板表面上形成有小的独立p-n结(像素)的矩阵。基板的剩余表面由电介质层(二氧化硅)填充。在像素和电介质层的表面上形成有约107Ohm-cm电阻率的薄电阻层和半透明金属层(场电极)。光电子的雪崩放大在小的从属p-n结(像素)中进行。雪崩电流穿过电阻层流动到场电极,从而充分覆盖像素的传感表面。然而,因为所述装置由于电阻层和场电极的低透明度而在可见光谱中提供低量子效率,所以这个装置是有缺陷的。美国专利5,844,291教导n型导电性硅基板表面,所述硅基板表面上设置有电阻层,所述电阻层包括具有确定电阻率的碳化硅、电介质层和p型导电性外延硅层。在电介质层内侧,形成n型导电性高掺杂区域,所述高掺杂区域从一侧与电阻层电接触,且从另一侧与外延层电接触。其中产生光电子的光敏层是外来材料表面上生长的外延层(即,电介质层和电阻层)。由于在电介质表面上生长硅外延层的复杂性,这个装置也是有缺陷的。俄罗斯专利2102820教导MAPD装置,所述MAPD装置包括形成于半导体层表面上的小尺寸p-n结(像素)的阵列,所述小尺寸p-n结具有10μ至100μ的特性尺寸。像素以某一间隔(约10μ)布置,所述间隔是防止电荷耦合所必需的。每一像素通过具有105-106Ω电阻的单独微电阻器连接至共用导电网格。由于像素的小尺寸,MAPD可在过电压模式(即,超过击穿电势)下执行。然后,光电子(或暗电子)在像素的传感区中的产生,使得自淬灭雪崩过程开始。这个过程类似于盖革模式(Geigermode)放电。当像素上的电势由于单独微电阻器而降低到击穿电压以下时,淬灭雪崩过程,从而不允许像素在雪崩过程期间从电压源充电。结果,实现快速光响应(即,在约10ns的半振幅高度下的脉冲宽度)与信号的高雪崩放大率(~106)的独特组合。在共用导电网格上添加来自操作像素的信号,从而提供MAPD光响应的线性度。只要两个或更多个光子撞击一个像素的机率很小,响应仍然是线性的。然而,一些所应用任务需要具有更快的光响应(约1ns)和更大的传感区域(至少10mm2或更大)的MAPD装置。由于已知MAPD装置的高比容量,增加传感区域会导致扩展其光响应。另外,光信号在已知MAPD装置中的高放大率导致不合需要的效应-光学串扰。这种效应与高雪崩放大率(~106)光信号有关,所述光信号伴随有半导体的雪崩区中额外发射的可见光子。这些光子在MAPD装置的邻近像素中被吸收,且引起雪崩过程的错误开始。为避免串扰效应,雪崩放大因数应减小到105以下,但这个低放大因数不足以在单光电子检测模式下工作。鉴于前述情况,需要改进的多像素雪崩光电二极管(MAPD)系统和方法,所述系统和方法致力于克服常规光敏半导体系统的前述障碍和缺陷。

技术实现要素:
一个实施方案包括多像素雪崩光电二极管,所述多像素雪崩光电二极管具有:半导体层;多个半导体区域,其与所述半导体层形成p-n结;共用导电网格,其藉由电介质层与所述半导体层隔开;以及单独微电阻器,其将所述半导体区域与共用导电网格连接,所述,所述多像素雪崩光电二极管的特征在于:在所述半导体区域的表面的一部分上,相应的单独发射器与所述半导体区域形成势垒,其中单独发射器借助于相应的第二单独微电阻器连接至附加导电网格。在一个方面,单独发射器具有与半导体区域相同的材料,但具有相反类型的导电性。在另一方面,单独发射器是关于半导体区域的宽禁带半导体。在另外的方面,单独发射器包括金属材料。在再另外的方面,半导体层形成于半导体基板的表面上。在一个方面,半导体层形成于半导体基板的表面上,且单独发射器具有与半导体区域相同的材料,但具有相反类型的导电性。在另一方面,半导体层形成于半导体基板的表面上,且单独发射器包括关于半导体区域的宽禁带半导体。在另外的方面,半导体层形成于半导体基板的表面上,且单独发射器包括金属材料。在一个方面,半导体层形成于电介质基板的表面上。在另一方面,半导体层形成于电介质基板的表面上,且单独发射器包括与半导体区域相同的材料,但具有相反类型的导电性。在另外的方面,半导体层形成于电介质基板的表面上,且单独发射器包括关于半导体区域的宽禁带半导体。在再另外的方面,半导体层形成于电介质基板的表面上,且单独发射器包括金属材料。在一个实施方案中,多像素雪崩光电二极管包括:半导体层;多个半导体区域,其设置于半导体层中且与半导体层限定p-n结;电介质层,其设置于由半导体层和多个半导体区域所限定的表面上;共用导电网格,其设置于电介质层上且藉由所述电介质层与半导体层隔开;多个第一微电阻器,其延伸穿过电介质层且将相应半导体区域与共用导电网格可操作地连接;以及多个第二微电阻器,其延伸穿过电介质层且经由相应发射器将相应半导体区域与第二导电网格可操作地连接,所述发射器可操作地连接至相应半导体区域,所述发射器与相应半导体区域形成相应势垒。附图说明图1示出多像素雪崩光电二极管(MAPD)装置的透视图,其中移除了一部分来展示MAPD装置的横截面。应注意,图式未按比例绘制,且具有相似结构或功能的元件出于说明目的在所有图式中通常由相同参考数字表示。还应注意,图式仅意图促进对优选实施方案的描述。图式并未示出所描述实施方案的每一方面,且并未限制本公开的范围。具体实施方式因为当前可利用的系统是有缺陷的,所以用于检测弱光信号、γ射线和核粒子的多像素雪崩光电二极管可证明是合乎需要的,且为广阔范围的益处提供基础,所述益处如在高信号放大率(约106或更大)下减少的光学串扰、减少的比电容和改进的光响应速度。根据本文中所公开的一个实施方案,可通过如图1中所示出的所公开多像素雪崩光电二极管(MAPD)100来实现这个结果。图1示出MAPD装置100的透视图,其中移除了部分105来展示MAPD装置100的横截面。MAPD装置100包括大致上平面的半导体层1,所述半导体层包括多个半导体区域2,所述半导体区域设置于由半导体层1所限定的狭槽110中。例如,在一些实施方案中,且如图1中所描绘,狭槽110和半导体区域2可为大致上矩形的且细长的,具有与半导体层1的顶部表面齐平的厚度。半导体区域2和半导体层1限定相应p-n结115。大致上平面的电介质层5可设置于半导体层1和半导体区域2上。每一半导体区域2可包括第一微电阻器3,所述第一微电阻器延伸穿过电介质层5,从而将半导体区域2与导电网格4连接。微电阻器3和共用导电网格4可沿电介质层5的顶部表面延伸,从而可将微电阻器3和共用导电网格4与半导体区域2大致上隔离,微电阻器3的延伸穿过电介质层5且接触半导体区域2的那部分除外。另外,发射器6可设置于半导体区域2的一部分上,且通过延伸穿过电介质层5的第二微电阻器8可操作地连接至导电网格7。微电阻器8和导电网格7可沿电介质层5的顶部表面延伸,从而可将微电阻器8和导电网格7与半导体区域2大致上隔离,微电阻器8的延伸穿过电介质层5且接触半导体区域2的那部分除外。另外,MAPD装置100可包括接触区域9,所述接触区域可操作来向半导体层1施加偏压。例如,接触区域9可延伸穿过电介质层5且接触半导体层1。在各种实施方案中,半导体层1可包括由外延半导体层所限定的均匀半导体板(基板),所述外延半导体层是在具有所要直径和厚度的半导体基板或电介质基板上生长的。图1中所描绘的MAPD装置100的示例性结构和配置可以包括光刻法的任何合适方式来生长、建立或以其他方式创建。在一些实施方案中,发射器6可包括与半导体区域2相同的材料,但具有相反类型的导电性。换句话说,单独发射器6与半导体区域2之间的势垒可限定均质的p-n结115。在另外的实施方案中,单独发射器6可包括关于半导体区域2的宽禁带半导体。换句话说,单独发射器6与半导体区域2之间的势垒可限定非均质的p-n结115。在其他实施方案中,单独发射器6可包括合适的金属材料。换句话说,可在单独发射器6与半导体区域2之间形成肖特基(Shottky)势垒。根据一些实施方案,在MAPD装置100的操作模式下,可相对于共用导电网格4和附加导电网格7将负偏压施加至半导体层1。在具有小尺寸的实施方案中,半导体区域2(或像素)可在盖革模式下工作,在所述盖革模式下,偏压可能超过特性击穿电压,超过的量为ΔU=2V。单个光电子在像素2中的存可以启动盖革模式雪崩过程,且这会导致将单独微电阻器3和/或8上的电势降增加至ΔU=2V。同时,像素2的电势减少了相同的值。电势降ΔV~2B可完全打开半导体区域2与单独发射器6之间的势垒。在一些实施方案中,这可以是由于高电流流过单独发射器6。脉冲电流可受附加的单独微电阻器3和/或8限制。当像素2的电势借助于经由单独微电阻器3和/或8充电来达到先前的值时,可切断脉冲电流。相应地,MAPD装置100中的光信号在微晶体管120中(即,在由“单独发射器6-半导体区域2-半导体层1”组成的结构中)被再次放大。在连接至附加导电网格7的电路的外部负载电阻上检测放大的信号。信号的放大因数的全值定义为M0=Mav*Mtr,其中Mav是雪崩过程的放大因数,Mtr是微晶体管120的放大因数。因此,在一些实施方案中接收光信号的必需的高放大因数(例如,M0=106),其具有低雪崩放大因数(例如,Mav=105),串扰在所述低雪崩放大因数下极低。这里,单独微晶体管120提供放大因数Mtr=10。由于低电容微晶体管120,可改进光信号的上升时间。例如,在一个实施方案中,像素2可为50μm×50μm,且微晶体管120的尺寸不超过5μm×5μm。在一些实施方案中,可如下制造多像素雪崩检测器100。在半导体层1(例如,具有比电阻2Ω×cm的n型导电性硅层)的表面上,可通过1100℃温度下的热氧化来形成具有约0.1μm厚度的二氧化硅(SiO2)电介质层5。可使用光刻法在二氧化硅电介质层5中打开具有10μm间隔的窗口,所述窗口具有40μm×40μm的大小。可用具有0.6×1014离子/cm2的剂量和能量70keV的硼离子对打开的窗口区域进行掺杂,从而形成p型半导体区域(即,p-n结115的像素2)。在一些实施方案中,可通过对每一像素2的小部分进行掺杂来形成发射器6。例如,可用具有9×1014离子/cm2的剂量和能量100keV的磷离子对约5μm×5μm的区域进行掺杂。可通过用具有3×1014离子/cm2的剂量和能量70keV的硼离子对像素2的一部分进行附加掺杂来形成至像素2(即,至p型硅区域)的接触区域。微电阻器3和/或8可包括具有约20kΩ/平方的电阻的非晶硅,且可使用气相化学沉积产生。共用导电网格4和附加导电网格7可通过金属铝的热蒸发来形成。在各种实施方案中,本文中所描述的这类系统和方法可产生低水平的光学串扰和快速光响应。相应地,本文中所描述的MAPD装置100可用于高能物理、剂量计、医用正电子发射扫描器和其他合适领域中。所描述实施方案可以有各种修改和替代形式,且所述实施方案的特定实施例已在图中通过举例来展示且在本文中详细地描述。然而应理解,所描述实施方案不限于所公开的特定形式或方法,而相反,本公开将覆盖所有修改、等效物和替代物。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1