本发明涉及一种使用作为电布线部的导电构件的半导体模块,尤其涉及用于既增大电流容量又提高可靠性的半导体模块。
背景技术:
由对电流进行开关控制的IGBT或MOS-FET构成的半导体模块是逆变器、充电器等功率转换装置的主要构成构件。在车辆电动化的进程中,要求功率转换装置具有高输出,而半导体模块的电流容量趋于增大。
此外,伴随着SiC等半导体元件的进化,半导体元件在200℃附近的高温环境下也能工作。然而,另一方面,关于冷热循环等中的结构可靠性,与以往相比,变得非常严苛。因此,要求半导体模块既因高输出化而增大电流容量,又要确保在高温环境下能长期间正常工作的可靠性。
为了实现大电流容量化,必须降低通电构件的电阻值。此外,为了在低温环境到高温环境均确保可靠性,必须降低半导体模块内部的构成构件的接合部处的冷热应力,并且必须降低该接合部处的残留应力。
此外,以往的半导体模块中,为了增大电流容量,有的直接将半导体元件的电极与构成主端子的母线接合(例如参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本专利特开2005-5593号公报
技术实现要素:
发明所要解决的技术问题
然而,在现有技术中存在如下问题。
该专利文献1所公开的现有的母线使用导电率较高的金属制的板(例如铜板)。一般而言,母线使用与电流容量相应的铜材料,但若用于大输出,则其剖面积变大而成为刚性的情况较多。
然而,该专利文献1中的布线结构下,半导体元件与母线间的热膨胀差较大,因此在其接合面处产生变形,产生冷热应力。其结果是,在半导体元件与母线的接合面上,会产生剥离、芯片裂痕等问题。
另外,无法吸收半导体模块中的构成构件的尺寸公差,在半导体元件与母线的接合面产生残留应力。该残留应力也成为上述剥离、芯片裂痕等问题的原因,从而可靠性产生问题。另外,母线的高频分量的电阻值较大,大电流容量化存在极限。
本发明为解决上述问题而得以完成,其目的在于,获得一种既能增大半导体装置的电流容量又能提高半导体模块的可靠性的半导体模块。
解决技术问题所采用的技术方案
本发明所涉及的半导体模块中,用于将配置于基板或母线的半导体元件与其他电子元器件电连接的导电构件具备如下结构:即、该结构具有可挠性,能够降低与半导体元件间的接合部处因导电构件与半导体元件间的线膨胀系数差而造成的冷热应力,并能吸收连接对象的尺寸公差。
发明效果
根据本发明,半导体元件的布线使用将金属细线构成为绞合线的导电构件、由编织线构成的导电构件、或由金属片层叠而成的导电构件。通过采用该结构,能够降低高频分量的电阻值,实现电布线的大电流容量化,同时,还能防止因导电构件与半导体元件之间的线膨胀系数差而产生的冷热应力所引起的问题,降低因半导体模块的尺寸公差而产生的残留应力。其结果是,能够获得一种既能增大半导体装置的电流容量又能提高半导体模块的可靠性的半导体模块。
附图说明
图1是本发明的实施方式1中的半导体模块的剖视图。
图2是本发明的实施方式4中的半导体模块的剖视图。
图3是本发明的实施方式5中的半导体模块的剖视图。
具体实施方式
下面,利用附图对本发明的半导体模块的优选实施方式进行说明。此外,在各图中,对相同或相当的部分附上同一标号,来进行说明。
实施方式1
图1是本发明的实施方式1中的半导体模块的剖视图。本实施方式1中的半导体模块9包括配置于基板1(或母线)的半导体元件3、构成主端子的导电构件2、散热板7。导电构件2与半导体元件3的上侧电极5-1及构成开关电路的电子元器件的端子8相接合。
此处,导电构件2采用将导电率较高的铜、铝等的金属细线形成为绞合线的结构。此外,通过调节绞合线的直径、数量,能实现电布线部的大电流容量化。接合方法当然可以是超声波接合、焊料接合、Ag烧结接合、利用导电粘接剂的接合、扩散接合、钎焊,也可以是其他接合方法。
本实施方式1中,由于将金属细线构成为绞合线的导电构件2具有可挠性,因此导电构件2因半导体元件3的热膨胀而变形。因此,在导电构件2与半导体元件3之间的接合面4不产生变形,不会因导电构件2与半导体元件3之间的线膨胀系数差而产生冷热应力。
此外,如图1所示例的那样,在半导体元件3的上侧电极5-1与电子元器件的端子8的高度方向存在阶差的情况下,由于导电构件2具有可挠性,因此仍能吸收阶差的尺寸公差。其结果是,能够去除在接合面4及接合面10的残留应力。
另外,高频电流因集肤效应而流过导电构件2的表面附近。因此,高频分量的电阻趋于变大。与此相对,本实施方式1中,导电构件2由细线或金属片的集合体构成,因此,与以往的母线相比,能增大表面面积。其结果是,能够降低高频分量的电阻,并能实现大电流容量化。
如上所述,根据实施方式1,采用将导电率较高的金属细线形成为绞合线的结构的导电构件。其结果是,能够使用具有可挠性且表面面积得到增大的导电构件,实现电布线部的大电流容量化,并防止因冷热应力而造成的接合部剥离,能够提高半导体模块的可靠性。
实施方式2
上述实施方式1中,对用于达到具有可挠性且增大表面面积的目的的导电构件2采用将导电率较高的金属细线形成为绞合线的结构的情况进行了说明。与此相对,在本实施方式2中,对为了达成相同目的而采用与实施方式1不同的结构的导电性构件的情况进行说明。
本实施方式2所涉及的导电构件2采用将金属细线编织成网状的结构(以下称为编织线)。上述结构的导电构件2的剖面形状为板形、椭圆形、圆形。
通过采用上述结构,与上述实施方式1相同,能够达到具有可挠性且增大表面面积的目的。其结果是,既能够增大电布线部的电流容量,又能防止因冷热应力而造成的剥离。
如上所述,根据实施方式2,采用将金属细线编织成网状的结构的导电构件。其结果是,能够使用具有可挠性且表面面积得到增大的导电构件,实现电布线部的大电流容量化,并防止因冷热应力而造成的接合部剥离,能够提高半导体模块的可靠性。
实施方式3
上述实施方式1中,对用于达到具有可挠性且增大表面面积的目的的导电构件2采用将导电率较高的金属细线形成为绞合线的结构的情况进行了说明。另外,在上述实施方式2中,对用于达成相同目的的导电构件2采用编织线的情况进行了说明。与此相对,在本实施方式3中,对为了达成相同目的而采用与实施方式1、2不同的结构的导电性构件的情况进行说明。
本实施方式3所涉及的导电构件2由金属片层叠而成,采用导电构件2与金属片的层间一并接合于半导体元件3的结构。采用上述结构的导电构件2的金属片之间除了接合面4、10,其他金属片的层间未被固定。此外,通过增加金属片的层叠数能增大电布线中的电流容量。
通过采用上述结构,构成导电构件2的金属片具有可挠性,能够根据半导体元件3的电极5-1的热膨胀而变形。因此,在接合面4不会产生变形,从而不会产生冷热应力。因此,通过采用上述结构,与上述实施方式1、2相同,既能够增大电布线部的电流容量,又能防止因冷热应力而造成的剥离。
如上所述,根据实施方式3,采用层叠金属片而成的结构的导电构件。其结果是,能够使用具有可挠性且表面面积得到增大的导电构件,实现电布线部的大电流容量化,并防止因冷热应力而造成的接合部剥离,能够提高半导体模块的可靠性。
实施方式4
本实施方式4中,对在上述图1的结构的基础上进一步具备能抑制残留应力的产生并提高散热性的结构的半导体模块进行说明。图2是本发明的实施方式4中的半导体模块的剖视图。与上述实施方式1中的图1的结构相比,图2的结构的不同点在于,具备冷却面6(相当于冷却面结构部)。因此,以下以该不同结构为中心进行说明。
本实施方式4中的导电构件2与半导体元件3的上侧电极5-1、导电构件2的冷却面6、以及电子元器件的端子8相连接。此处,作为导电构件2可以适用实施方式1中说明的将金属细线构成为绞合线的导电构件,或实施方式2中说明的将金属细线编织为网状的导电构件,也可以适用在实施方式3中说明的由金属片层叠而成的导电构件。
本实施方式4中新增的冷却面6相对于半导体元件的上侧电极5-1绝缘,与被积极冷却的基板1或散热板7相接合。通过具有上述结构,导电构件2能够吸收半导体元件3与冷却面6在高度方向上的尺寸公差。因此,在接合时不会产生残留应力。
此外,通过具备冷却面6,能通过导电构件2冷却半导体元件3。因此,散热面积增大,能抑制因残留应力而造成的导电构件2的剥离,并提高散热性。
如上所述,根据实施方式4,能获得与上述实施方式1~3相同的效果。进而,通过采用具备冷却面的结构,能够抑制残留应力的产生,并能实现散热性得到提高的半导体模块。
实施方式5
本实施方式5中,说明在基板1上配置有多个半导体元件3时,利用相同导电构件2来进行连接的结构。图3是本发明的实施方式5中的半导体模块的剖视图。与上述实施方式1中的图1的结构相比,图3的结构的不同点在于,在基板1上搭载有两个半导体元件3,该两个半导体元件3共同通过一个导电构件2来进行连接。因此,以下以该不同结构为中心进行说明。
本实施方式5中的半导体模块9在基板1配置两个以上的半导体元件3(其中,图3示例出了半导体元件3为两个的情况),利用同一导电构件2来将两个以上的半导体元件3电连接。
另外,将导电构件2与各半导体元件3的上侧电极5-1之间的接合面4进行超声波接合。超声波接合装置通过对导电构件2提供超声波振动,从而在接合面产生摩擦热,将导电构件2与各半导体元件3相接合。
作为导电构件2可以适用实施方式1中说明的将金属细线构成为绞合线的导电构件、实施方式2中说明的将金属细线编织为网状的导电构件、以及实施方式3中说明的由金属片层叠而成的导电构件中的任意导电构件。另外,图3中未进行图示,但通过设置上述实施方式4中的图2进行说明的冷却面6来接合导电构件2,也能够提高半导体元件3的散热性。
如上所述,根据实施方式5,也能通过利用本发明的导电构件,来连接多个半导体元件,从而获得与上述实施方式1~4相同的效果。
此外,基于与现有技术的比较来说明将导电构件2与接合面4(11)进行接合时采用超声波接合的情况下本申请发明所涉及的导电构件2的优点。在将作为金属板的母线与半导体元件3的电极5-1进行超声波接合的现有的半导体模块中,在进行接合时,母线的面内方向的超声波振动传播至另一半导体元件3的电极5-3与母线间的接合面11,从而接合面11处的剥离成为问题。
与此相对,上述实施方式1~5所涉及的半导体模块9中,不使用母线,而使用具有可挠性的导电构件2。因此,在将导电构件2与半导体元件3的电极5-1进行超声波接合时,能够利用具有可挠性的导电构件2来吸收超声波振动。因此,能够防止半导体元件3的电极5-3与导电构件2之间的接合面11处的剥离。