本发明涉及对燃料电池供给阳极气体以及阴极气体的燃料电池系统以及燃料电池系统的控制方法。
背景技术:
作为燃料电池系统之一,有在将阳极气体提供给燃料电池的供给通道中设置喷射泵(ejector),通过喷射泵吸引在燃料电池中未被消耗的剩余的阳极气体,将其提供给燃料电池的循环系统的燃料电池系统。
在日本专利JP2008-190336A中公开了在喷射泵的上游侧设置喷射器(injector),控制喷射器的喷射定时,使得从喷射器喷射的喷射流量与由喷射泵吸引的吸引流量相加后的供给流量成为满足来自负载的要求电力的流量的技术。
技术实现要素:
但是,在上述的技术中,由于使用喷射器控制从喷射泵排出的流量,所以虽然发电所需要的流量得到确保,但是因喷射泵而使向燃料电池循环的剩余的阳极气体有可能不足。
本发明是着眼于这样问题点而完成的,目的是提供确保因喷射泵使向燃料电池循环的阳极气体的循环流量的燃料电池系统以及燃料电池系统的控制方法。
按照本发明的一个方式,燃料电池系统对燃料电池供给阳极气体以及阴极气体,同时使所述燃料电池根据负载发电。燃料电池系统包括:将阳极气体提供给所述燃料电池的供给通道;设置在所述供给通道中,调整对所述燃料电池供给的阳极气体的压力的调压阀;以及从所述燃料电池排出阳极气体的排出通道。燃料电池系统还包括:设置在所述供给通道中,通过从所述调压阀供给的阳极气体,吸引被排出到所述排出通道的阳极气体,使该阳极气体在所述燃料电池中循环的喷射泵。并且,燃料电池系统包括使提供给所述喷射泵的阳极气体的压力脉动的控制单元。
附图说明
图1是表示本发明的第1实施方式的燃料电池堆的立体图。
图2是表示在燃料电池堆层积的燃料电池的截面图。
图3A是表示构成燃料电池的阳极分离器的平面图。
图3B是表示构成燃料电池的阴极分离器的平面图。
图4是表示燃料电池系统的主要结构的图。
图5A是表示燃料电池系统中设置的喷射泵的结构的截面图。
图5B是表示根据从阳极调压阀供给的阳极气体的压力,对喷射泵供给的阳极气体的供给流量的特性的图。
图6是表示为了使阳极气体压力脉动而决定的脉动控制图的图。
图7是说明决定脉动控制图的切换点的方法的图。
图8是表示根据要求负载,从阳极调压阀对喷射泵供给阳极气体的供给流量的图。
图9是例示低负载区域以及高负载区域中的阳极气体压力的波形的图。
图10是表示阳极气体压力的脉动幅度与燃料电池的耐久性的关系的图。
图11是表示一例控制器进行的燃料电池系统的控制方法的流程图。
图12是表示对于阳极气体压力的脉动控制的处理步骤例子的流程图。
图13是表示一例本发明的第2实施方式中的脉动控制图的图。
图14是表示本发明的第3实施方式的燃料电池系统的控制方法的流程图。
图15是表示一例控制器中记录的脉动幅度抑制图的图。
图16是表示一例本发明的第4实施方式的脉动幅度图的图。
具体实施方式
以下,参照附图等说明本发明的实施方式。
(第1实施方式)
首先,说明用于本发明的第1实施方式的燃料电池系统的燃料电池堆。
燃料电池堆是将多张燃料电池层积而成的电池组,在本实施方式中,用作对驱动车辆的电动机供给电力的电源而使用。
燃料电池具有阳极电极(所谓的燃料极)、阴极电极(所谓的氧化剂极)、以及被这些电极夹持的电解质膜。
燃料电池通过对阳极电极供给的含有氢的阳极气体(所谓的燃料气体)、和对阴极电极供给的含有氧的阴极气体(所谓的氧化剂气体)产生电化学反应而发电。燃料电池的电化学反应(发电反应)在阳极电极以及阴极电极中如以下那样进行。
阳极电极:2H2→4H++4e-···(1)
阴极电极:4H++4e-+O2→2H2O···(2)
图1是表示一例本实施方式中的燃料电池堆110的立体图。
燃料电池堆110具有:多个单个单元1;一对集电板2a以及2b;一对绝缘板3a以及3b;一对端板4a以及4b;以及与未图示的4根拉杆螺合的螺母5。
单个单元1是固体高分子型的燃料电池。单个单元1产生1伏特左右的电动势。对于单个单元1的结构,参照图2在后叙述。
一对集电板2a以及2b被分别配置在层积的多个单个单元1的外侧。集电板2a以及2b由不透气性的导电性构件形成。不透气性的导电构件例如是致密质碳。集电板2a以及2b在上边的一部分中具有输出端子6。在燃料电池堆110中,每个单个单元1中产生的电子e-从输出端子6被取出。
一对绝缘板3a以及3b被分别配置在集电板2a以及2b的外侧。绝缘板3a以及3b由绝缘性的构件,例如橡胶形成。
一对端板4a以及4b被分别配置在绝缘板3a以及3b的外侧。端板4a以及4b由具有刚性的金属性的材料、例如钢形成。
在一对端板4a以及4b中的一方的端板4a上,形成冷却水入口孔41a以及冷却水出口孔41b、阳极气体入口孔42a以及阳极气体出口孔42b、以及阴极气体入口孔43a以及阴极气体出口孔43b。而且,冷却水入口孔41a、阳极气体出口孔42b以及阴极气体入口孔43a被形成在端板4a的一端侧(图中右侧),冷却水出口孔41b、阳极气体入口孔42a以及阴极气体出口孔43b被形成在另一端侧(图中左侧)。
这里,作为对阳极气体入口孔42a供给氢的方法,例如有从氢储藏装置直接供给氢气的方法,或者,将含有氢的燃料进行改质,供给改质后的含氢气体的方法。而且,作为氢储藏装置,有高压气体罐、液化氢罐、氢吸藏合金罐等。作为燃料气体,考虑天然气、甲醇,汽油等。而且,作为氧化剂气体,一般使用空气。
螺母5与在贯通燃料电池堆110的内部的4根拉杆的两端部形成的外螺纹部螺合。通过将螺母5螺合联接在拉杆上,燃料电池堆110在层积方向上被捆紧。拉杆由具有刚性的金属材料、例如钢形成。为了防止单个单元1之间电气性短路,在拉杆的表面上实施绝缘处理。
图2是表示从沿着图1的II-II线的方向看的单个单元1的截面的图。
单个单元1以阳极分离器20和阴极分离器30挟持膜电极接合体(Membrane Electrode Assembly:以下称为“MEA”。)11而构成。
MEA11具有电解质膜11a、阳极电极11b和阴极电极11c。MEA11在电解质膜11a的一个面上具有阳极电极11b,在另一个面上具有阴极电极11c。
电解质膜11a是由氟类树脂形成的质子传导性的离子交换膜。电解质膜11a在包含水的潮湿的状态表示出良好的导电性。
阳极电极11b以及阴极电极11c由气体扩散层、厌水层、以及催化剂层构成。气体扩散层是具有充分的气体扩散性以及导电性的构件,例如,由碳纤维构成的丝所织成的碳混线形成。厌水层是包含聚乙烯氟代乙烯(ポリエチレンフルオロエチレン)和碳材料的层。催化剂层由承载白金的碳粒子形成。
阳极分离器20与阳极电极11b接触。阳极分离器20在与阳极电极11b接触的一侧,具有用于对阳极电极11b供给阳极气体的阳极气体通道24。而且,在与阳极电极11b直接接触的面(如后所述通道肋25的顶面)25a的相反面,具有冷却燃料电池堆110的冷却水流过的冷却水通道26。
阴极分离器30也同样,在与阴极电极11c接触的一侧,也具有用于对阴极电极11c供给阴极气体的阴极气体通道34,在与阴极电极11c接触的面(如后所述通道肋35的顶面)35a的相反面具有冷却水通道36。阳极分离器20以及阴极分离器30是金属或者碳。
而且,阳极分离器20的冷却水通道26和阴极分离器30的冷却水通道36形成为相互面对,形成一个冷却水通道51。
而且,流过阳极气体通道24的阳极气体和流过阴极气体通道34的阴极气体,经由MEA11相互反向地流过。在本实施方式中,流过阳极气体通道24的阳极气体从纸面的深处向跟前流过,流过阴极气体通道34的阴极气体从纸面的跟前向里流动。
图3A是从阳极电极侧看阳极分离器20的平面图。
在阳极分离器20的一端(图中左侧),按照从上到下的顺序,形成阴极气体出口孔43b、冷却水出口孔41b、阳极气体入口孔42a。另一方面,在阳极分离器20的另一端(图中右侧),按照从上到下的顺序,形成阳极气体出口孔42b、冷却水入口孔41a、阴极气体入口孔43a。
而且,在阳极分离器20的表面,形成阳极气体扩散部21、多个沟状的阳极气体通道24、阳极气体合流部27。
阳极气体通道24是从气体通道底面24a向阳极电极侧突出而与阳极电极接触的多个通道肋25的之间形成的通道。而且,在通道肋25的背面成为前述的冷却水通道26。通道肋25的侧面25b成为锥状,从通道肋顶面25a向气体通道底面24a以一定的角度倾斜。由此,由于流过阳极气体通道2的气体的多余的紊流被抑制,所以压力损失被降低。
阳极气体扩散部21被形成在阳极气体入口孔42a和阳极气体通道24之间。在阳极气体扩散部21中,为了将阳极气体均等地分配至各阳极气体通道24,栅格状地形成从阳极气体扩散部底面21a向阳极电极突出而与阳极电极接触的多个突起状扩散肋222。
阳极气体合流部27被形成在阳极气体通道24和阳极气体出口孔42b之间。阳极气体合流部27是从阳极气体通道24朝向阳极气体出口孔42b宽度不断变窄的气体通道。
在阳极气体合流部27中,形成从阳极气体合流部底面27a向阳极电极突出而与阳极电极接触的多个合流肋28。阳极气体合流部27通过该合流肋28被区分为多个区域(气体合流通道)29。
从气体通道终端24c朝向阳极气体出口孔42b形成合流肋28。合流肋28形成为使得越行进到阳极气体出口孔42b,气体合流通道29的宽度越窄。合流肋28形成为使得从阳极气体通道24向各气体合流通道29流入的气体流量大致相同。合流肋28的根数少于通道肋25的根数。而且,延长一部分的通道肋25的终端,直至相邻的气体合流通道29的通道宽度与阳极气体通道24的通道宽度大致相同。
图3B是从阴极电极11c侧看阴极分离器30的平面图。
阴极分离器30是与阳极分离器20同样的结构。阴极分离器30包括:阴极气体扩散部31、阴极气体通道34、通道肋35、阴极气体合流部37。
在阴极气体扩散部31中设置扩散肋322。在阴极气体合流部37中设置合流肋38,形成气体合流通道39。
因为阴极分离器30隔着MEA11与阳极分离器20相对,所以阴极分离器30的一端侧(图3B的左侧)成为阳极分离器20的另一端侧(图3A的右侧)。而且,阴极分离器30的另一端侧(图3B的右侧)成为阳极分离器20的一端侧(图3A的左侧)。
因此,在阴极分离器30的一端侧(图3B的左侧)形成与在阳极分离器20的另一端侧形成的三个孔相同的阳极气体出口孔42b、冷却水入口孔41a、阴极气体入口孔43a。而且,在阴极分离器30的另一端侧(图3B的右侧)也形成与在阳极分离器20的一端侧形成的三个孔相同的阴极气体出口孔43b、冷却水出口孔41b、阳极气体入口孔42a。
图4是表示本发明的第1实施方式中的燃料电池系统100的结构的概略图。
燃料电池系统100对燃料电池堆110供给阳极气体以及阴极气体,同时使燃料电池堆110根据负载发电。
燃料电池系统100是阳极气体循环系统的燃料电池系统。燃料电池系统100具有:燃料电池堆110、阳极气体给排装置200、以及控制器400。而且,关于对图1所示的燃料电池堆110的阴极气体入口孔43a供给阴极气体的阴极气体供给装置、以及对燃料电池堆110的入口孔41a供给冷却水的冷却装置,由于不是本实施方式的主要部分,所以为了方便,省略图示。
燃料电池堆110接受阳极气体以及阴极气体的供给,同时根据燃料电池堆110上连接的负载来发电。负载例如是安装在车辆上的电动机或辅助燃料电池堆110的发电的辅助设备等。作为辅助设备,例如列举对燃料电池堆110供给阴极气体的压缩机等。
在燃料电池堆110中,由于层积的多张单个单元1相互串联地连接,所以在每个单个单元1中产生的单元电压的总和为对负载的输出电压。
阳极气体给排装置200包括:高压罐210、阳极气体供给通道220、阳极调压阀230、喷射泵240、阳极气体排出通道250、缓存罐260、循环通道270、清洗通道280、以及清洗阀290。进而,阳极气体给排装置200包括:第1压力传感器410和第2压力传感器420。
高压罐210将提供给燃料电池堆110的阳极气体保持为高压状态来储藏。
阳极气体供给通道220是为了将从高压罐210流出的阳极气体提供给燃料电池堆110而使用的通道。阳极气体供给通道220的一个端部与高压罐210连接,另一个端部与图1所示的燃料电池堆110的阳极气体入口孔42a连接。
阳极调压阀230被设置在阳极气体供给通道220上。阳极调压阀230将从高压罐210推出的阳极气体调节为希望的压力而提供给燃料电池堆110。
阳极调压阀230是可连续地或者分级地调节阀的开度的电磁阀。阳极调压阀230的开度由控制器400控制。阳极调压阀230的开度越大,阳极调压阀230打开越大,对燃料电池堆110供给的阳极气体的压力P2上升。
第1压力传感器410被设置在阳极调压阀230与喷射泵240之间的阳极气体供给通道220上。第1压力传感器410检测从阳极调压阀230对喷射泵240供给的阳极气体的供给压力P1。表示供给压力P1的检测信号从第1压力传感器410被输出到控制器400。
喷射泵240被设置在循环通道270对于比阳极调压阀230下游的阳极气体供给通道220合流的部分。喷射泵240是将从阳极调压阀230供给的阳极气体的供给流量提供给燃料电池堆110,同时从循环通道270吸引阳极气体,使阳极气体在燃料电池堆110中循环的机械式的泵。关于喷射泵240的细节,参照图5A以及图5B在后叙述。
第2压力传感器420被设置在比喷射泵240下游、且位于燃料电池堆110的近旁的阳极气体供给通道220上。第2压力传感器420检测对燃料电池堆110供给的阳极气体的压力P2。表示压力P2的检测信号从第2压力传感器420输出到控制器400。压力P2被作为图3A所示的阳极气体通道24的压力使用。
阳极气体排出通道250是从图1所示的燃料电池堆110的阳极气体出口孔42b排出阳极气体的通道。在阳极气体排出通道250中,从燃料电池堆110排出阳极废气。
所谓阳极废气,是在燃料电池堆110的发电反应中未被使用的剩余的阳极气体和杂质气体的混合气体。而且杂质气体是从阴极气体通道34经由MEA11交叉泄漏(透过)到阳极气体通道24的水蒸气和氮气等的惰性气体。
缓存罐260暂时存储从燃料电池堆110通过阳极气体排出通道250流过来的阳极废气。阳极废气中的蒸气的一部分在缓存罐260内凝聚而成为液态水,从阳极废气被分离。
清洗通道280是将包含在缓存罐260中蓄积的氮气的阳极废气和液态水排出的通道。清洗通道280的一个端部与缓存罐260的下游侧连接,另一个端部开口。
清洗阀290被设置在清洗通道280上。清洗阀290将缓存罐260中积蓄的阳极废气和液态水经由清洗通道280排出至外部。清洗阀290是能够连续地或者分级地调节阀的开度的电磁阀。清洗阀290的开度由控制器400控制。调节清洗阀290的开度,使得阳极废气中的氢浓度为规定值以下。
循环通道270是使从缓存罐260流出的阳极废气合流至阳极气体供给通道220的通道。循环通道270的一个端部与缓存罐260连接,另一个端部与喷射泵240的吸引口连接。
控制器400由具有中央运算装置(CPU)、只读存储器(ROM)、随机接入存储器(RAM)、以及输入输出接口(I/O接口)的微计算机构成。
在控制器400中,除了输入前述的第1压力传感器410以及第2压力传感器420的信号,还输入用于检测燃料电池系统100的运转状态和与燃料电池堆110连接的负载的动作状态等的各种传感器的信号等。
作为各种传感器,有检测油门踏板的踩下量的油门行程传感器510、以及测量与燃料电池的湿润状态存在相关的燃料电池堆110的内部电阻的内部电阻测量装置520。此外,有检测用于冷却燃料电池堆110的冷却水的温度的温度传感器等。
控制器400根据从上述的各种传感器等输入的信号和至燃料电池系统100的构件的指令信号等,控制燃料电池堆110的运转状态。
例如,控制器400根据从油门行程传感器510输出的踩下量,计算从电动机对燃料电池堆110要求的要求电力,即要求负载。
而且,该要求负载越大,控制器400越增大对燃料电池堆110供给的阴极气体的流量。与此同时,要求负载越大,控制器400越增大阳极调压阀230的开度,提高对燃料电池堆110供给的阳极气体的压力。
而且,控制器400根据燃料电池堆110的温度状态、湿润状态、内部的压力状态、水蒸气的分压状态、排出氢的稀释状态等,限制阴极气体压力以及流量的控制、和阳极气体压力的控制。
图5A是表示本实施方式的射泵240的详细结构的截面图。
喷射泵240由喷嘴241以及扩散器(diffuser)242构成。
喷嘴241将从阳极调压阀230对供给口240A供给的阳极气体的流速加速,喷射至扩散器242。根据要求负载来计算对喷嘴241供给的阳极气体的供给流量,相当于伴随因燃料电池堆110发电而消耗的阳极气体量。
喷嘴241形成为圆筒状。在喷嘴241的前端部,形成比供给口240A狭窄的开口。由此,因为对供给口240A供给的阳极气体的流速在前端部变快,所以阳极气体在前端部被喷射至扩散器242。
为了使阳极废气在燃料电池堆110中循环,扩散器242通过从喷嘴241喷射的阳极气体的流速,从循环通道270吸引阳极废气。然后,扩散器242将合并了吸引的阳极废气的循环流量和从喷嘴241喷射的阳极气体的供给流量的阳极气体总流量,从排出口240C排出到燃料电池堆110。
扩散器242在与喷嘴241同轴上形成合流通道。合流通道的开口形成为随着接近排出口240C而变宽。在扩散器242中,形成从吸引口240B至喷嘴241的前端部分延伸的圆筒状的吸引室,吸引室和合流通道连通。
图5B是表示根据被阳极调压阀230调整的阳极气体压力,对喷射泵240供给的阳极气体供给流量的特性248的图。
这里,横轴表示从阳极调压阀230对喷嘴241供给的阳极气体的供给压力,纵轴表示将对喷嘴241供给的阳极气体的供给流量变换为标准状态下的阳极气体流量(NL/min)的值。
如图5B所示,对喷嘴241供给的阳极气体的供给流量与对喷嘴241供给的阳极气体的供给压力成比例。
因此,从负载要求的要求电力越增加,从阳极调压阀230供给的阳极气体的供给压力越大,所以对喷嘴241供给的阳极气体的供给流量增加。由此,被扩散器242吸引的阳极废气的循环流量增加。
这样,通过使用喷射泵240,吸引从燃料电池堆110排出的阳极废气,使其在燃料电池堆110循环,能够再次利用剩余的阳极气体。
另一方面,若来自负载的要求电力变小,则至喷嘴241的阳极气体的供给流量变少,所以被扩散器242吸引的阳极废气的吸引量减少,阳极废气在燃料电池堆110中不循环。
作为其对策,在本实施方式中,使对喷射泵240供给的阳极气体的压力脉动,以便从燃料电池堆110排出的阳极废气通过喷射泵240充分地循环。
此外,在本实施方式中,利用阳极废气中包含的水蒸气加湿燃料电池堆110。
具体地说,通过喷射泵240,使阳极废气在图3A所示的阳极气体通道24中充分循环,从而阳极气体通道24的湿度全体地上升,同时与干燥的阴极气体流过的上游侧的阴极气体通道34的湿度的差变大。该相对的湿度的差成为驱动力,阳极气体通道24内的水蒸气经由MEA11扩散至阴极气体通道34内,MEA11的电解质膜11a被加湿。由此,在电解质膜11a中高效地进行发电。
图6是表示为了使阳极气体压力脉动而确定的脉动控制图的一个例子的概念图。脉动控制图被预先记录在控制器400中。
在图6中,通过实线表示从喷射泵240对燃料电池堆110供给的阳极气体压力P2的目标值。而且作为参考,通过虚线表示从阳极调压阀230对喷射泵240供给的阳极气体供给压力P1的最大值。
这里,横轴表示对燃料电池堆110的要求负载Lreq,纵轴表示阳极气体的目标压力Pt。要求负载Lreq根据从电动机对燃料电池堆110要求的要求电力计算。
切换点Lsw是切换使对燃料电池堆110供给的阳极气体的压力P2脉动的脉动压供给、和使对燃料电池堆110供给的阳极气体的压力P2固定的恒压供给的阈值。
在要求负载Lreq比切换点Lsw高的高负载区域中,作为目标压力Pt,对于每个要求负载设定一个阳极气体的目标压力Pt。由此,执行控制阳极调压阀230的恒压控制,使得阳极气体的压力固定。
在高负载区域中,阳极气体压力P2与要求负载Lreq成比例地增大。因此,要求负载Lreq越大,阳极气体压力P2越高。
其理由是为了防止要求负载Lreq越大,对燃料电池堆110供给的阴极气体压力越高,所以燃料电池堆内的阴极气体压力和阳极气体压力的极间差压过大,MEA11损伤。因此,确定为要求负载Lreq越大,伴随阴极气体压力上升的阳极气体压力P2越大。
在要求负载Lreq比切换点Lsw低的低负载区域中,作为目标压力Pt,确定脉动上限压力P2_up以及脉动下限压力P2_dn的两个目标压力Pt。由此,执行控制阳极调压阀230的脉动压控制,使得阳极气体的压力脉动。
脉动上限压力P2_up是为了使阳极气体的压力脉动而确定的上限压力的目标值。
脉动上限压力P2_up大致为固定的值,要求负载Lreq越大,在燃料电池堆110中的阳极气体的消耗量越大,所以脉动上限压力P2_up缓慢地变大。脉动上限压力P2_up被确定为可以充分地确保因喷射泵240而循环的阳极废气的循环流量的阳极气体压力。在本实施方式中,脉动上限压力P2_up被设定,使得阳极废气的循环流量成为燃料电池的加湿所需要的流量。
例如脉动上限压力P2_up被设定,使得阳极废气的循环流量相对于对喷嘴241供给的阳极气体的供给流量的流量比为30%(百分比)。即,设定脉动上限压力P2_up,使得对于在燃料电池堆110中消耗的阳极气体的流量,阳极废气的循环流量为30%。而且,流量比通过阳极废气的循环流量除以阳极气体的供给流量来求。
脉动下限压力P2_dn是为了使阳极气体的压力脉动而确定的下限压力的目标值。
在要求负载Lreq从零(0)至负载Lh为止的水生成范围中,脉动下限压力P2_dn为大致固定的值,要求负载Lreq越大,脉动下限压力P2_dn稍稍变大。
脉动下限压力P2_dn被确定为为了使阳极废气中含有燃料电池堆110的加湿所需要的水蒸气量而最低限需要的阳极气体压力。
而且,燃料电池堆110的温度越高,饱和水蒸气量越高,阳极废气中包含的水蒸气量越增加。因此,控制器400也可以在水生成范围中,燃料电池堆110的温度、和燃料电池堆110的冷却水温度越高,越提高脉动下限压力P2_dn。
在从负载Lh至切换点Lsw的脉动幅度抑制范围中,确定要求负载Lreq,使得要求负载Lreq越大,脉动下限压力P2_dn越大。其理由是,存在要求负载Lreq越大,越增加对燃料电池堆110供给的阳极气体的流量的需要。
在图6中,说明了根据要求负载Lreq设定阳极气体的目标压力P的脉动控制图,但是也可以取代要求负载Lreq,使用与要求负载Lreq存在相关的参数。作为与要求负载Lreq存在相关的参数,例如,举出根据要求负载Lreq算出的阳极气体的供给流量(要求流量)。
图7说明决定脉动控制图的切换点Lsw的方法的图。
在图7中,示出根据对于喷射泵240的阳极气体的供给流量,从喷射泵240在燃料电池堆110中循环的阳极废气的循环流量的特性249。这里,横轴表示对喷射泵240供给的阳极气体的供给流量,纵轴表示从喷射泵240排出的阳极废气的循环流量。
在喷射泵240的特性249中,阳极气体的供给流量越少,阳极废气的循环流量越少。然后,在阳极气体的供给流量降低至循环临界流量Qlim时,阳极废气的循环流量为零,阳极废气不从喷射泵240循环到燃料电池堆110中。
加湿流量Qh是为了使阳极废气循环时将燃料电池的加湿所需要的最低限度的水蒸气量提供给燃料电池堆110而确定的循环流量。例如,加湿流量Qh被设定为阳极废气的循环流量相对阳极气体的供给流量成为30%的值。
然后,脉动切换流量Qsw被设定,使得阳极废气的循环流量成为加湿流量Qh。通过求出阳极气体的供给流量成为脉动切换流量Qsw时的要求负载Lreq,决定图6所示的切换点Lsw。
接着参照图8以及图9,说明使阳极气体的压力脉动的脉动控制。
图8是表示根据要求负载,从阳极调压阀230提供给喷射泵240的阳极气体的供给流量的图。
图8(A)是表示在高负载时中,从阳极调压阀230提供给喷射泵240的阳极气体的供给流量的图。这里,阳极气体的要求流量大于循环临界流量Qlim,所以进行通过阳极调压阀230使阳极气体供给流量固定那样供给阳极气体的恒压供给。而且,阳极气体的要求流量根据要求负载Lreq进行计算。
图8(B)是表示在中负载时,从阳极调压阀230供给喷射泵240的阳极气体的供给流量的图。这里,由于阳极气体的要求流量与脉动切换流量Qsw一致,所以通过阳极调压阀230进行恒压供给,使其与图8(A)相同。
图8(C)是表示在低负载时,从阳极调压阀230供给喷射泵240的阳极气体的供给流量的图。这里,由于阳极气体的要求流量小于循环临界流量Qlim,所以一边通过阳极调压阀230使阳极气体的压力脉动,一边进行对燃料电池堆110供给阳极气体的脉动压供给。而且,由于脉动压供给通过阳极调压阀230的开闭控制,将阳极气体脉冲地提供给燃料电池堆110,所以也可以称为脉冲供给。
如图8(C)所示,在脉动压供给中,仅在固定的期间打开阳极调压阀230而对燃料电池堆110脉冲地供给阳极气体,使得阳极气体供给流量的平均流量成为燃料电池堆110的发电所需要的要求流量。而且,阳极调压阀230的开度被设定为阳极气体供给流量成为大于循环临界流量Qlim的流量的值。
由此,可以一边对燃料电池堆110供给发电所需要的阳极气体的流量,一边通过喷射泵240使阳极废气在燃料电池堆110中循环,加湿燃料电池堆110。
图9是例示在要求负载低于切换点Lsw的低负载区域、以及,要求负载高于切换点Lsw的高负载区域中的阳极气体压力的波形的图。
图9(A)表示在低负载区域中要求负载小的时候的阳极气体压力的脉动波形的图。在图9(A)中,将时间轴设为共同来表示阳极气体压力P2的波形和阳极调压阀230的开闭状态。
在时刻t1中,阳极调压阀230被设定为全开(ON)。由此,阳极气体从阳极调压阀230经由喷射泵240供给至燃料电池堆110,所以对燃料电池堆110供给的阳极气体的压力P2上升。
这时,为了通过喷射泵240吸引阳极废气,与发电所需要的流量相比,在燃料电池堆110中多余地供给阳极气体。而且,与图9(B)相比,要求负载Lreq小,在燃料电池堆110中消耗的阳极气体的消耗量少,所以阳极气体的压力P2上升的速度快。
在时刻t2中,阳极气体的压力P2上升至脉动上限压力P2_up,所以阳极调压阀230被设定为全闭(OFF)。由此,停止至燃料电池堆110的阳极气体的供给。在该状态下,对燃料电池堆110供给的阳极气体因发电反应而消耗,所以在燃料电池堆110内存在的阳极气体减少,阳极气体压力P2降低。
在燃料电池堆110中,由于从时刻t1至时刻t2的阳极气体供给时间中,多余地供给阳极气体,所以在从时刻t2开始的无供给时间Tnp中,由于燃料电池堆110消耗阳极气体而需要时间。
在时刻t3,由于阳极气体的压力P2降低至脉动下限压力P2_dn,所以阳极调压阀230再次被设定为全开,从阳极调压阀230对燃料电池堆110供给阳极气体,阳极气体的压力P2上升。
这样,通过参照图6所示的脉动控制图,交替地切换与要求负载Lreq相对应的脉动上限压力P2_up以及脉动下限压力P2_dn,使阳极气体的压力P2脉动。由此,通过喷射泵240,可以吸引燃料电池的加湿所需要的流量的阳极废气,提供给燃料电池堆110。
图9(B)是表示低负载区域中要求负载大时的阳极气体压力的脉动波形的图。在图9(B)中,与图9(A)相同,将时间轴设为共同来表示阳极气体压力P2的波形和阳极调压阀230的开闭状态。
在图9(B)中,由于要求负载Lreq小于切换点Lsw,所以与图9(A)同样,通过交替地切换与要求负载Lreq相对应的脉动上限压力P2_up以及脉动下限压力P2_dn,使阳极气体的压力P2脉动。
由于要求负载Lreq比图9(A)时的要求负载大,所以如图6所示,脉动下限压力P2_dn比图9(A)中表示的脉动下限压力高,脉动幅度ΔP比图9(A)中表示的脉动幅度ΔP窄。
这里,说明要求负载Lreq越大,越可以减小脉动幅度ΔP的理由。
首先,要求负载Lreq越大,燃料电池堆110中消耗的阳极气体的消耗量越增加,所以将阳极调压阀230仅打开固定时间时的、对燃料电池堆110供给的阳极气体的剩余量变少。因此,要求负载Lreq越大,无供给时间Tnp越短。由于无供给时间Tnp变短,阳极气体压力P2的降低幅度变小,所以脉动幅度ΔP变小。
与此同时,要求负载Lreq越大,伴随燃料电池堆110中消耗的阳极气体的消耗量的增加的、无供给期间Tnp中的阳极气体压力P2的降低速度越快,所以使阳极气体压力P2脉动的脉动周期变短。
这样,为了使阳极废气循环,在将阳极调压阀230仅打开固定期间,将阳极气体脉冲地提供给喷射泵240的脉动压控制中,要求负载Lreq越大,脉动幅度ΔP越小。如图6所示,在本实施方式中,脉动上限压力P2_up以及脉动下限压力P2_dn被设定为脉动限制图(map),使得阳极调压阀230的开时间固定。
图9(C)是表示高负载区域中的阳极气体压力的波形的图。在图9(C)中,与图9(A)以及图9(B)同样,将时间轴设为共同来表示阳极气体压力P2的波形和阳极调压阀230的开闭状态。
在图9(C)中,要求负载Lreq也大于切换点Lsw。这里,如图6所示,由于与要求负载Lreq对应的脉动上限压力Pu以及脉动下限压力Pd被设定为同一值,所以阳极调压阀230被设定为全开,使得阳极气体的压力P2成为固定的目标压力。由此,阳极气体压力的脉动幅度ΔP消散。
而且,要求负载Lreq大于切换点Lsw,所以即使从阳极调压阀230提供给喷射泵240的压力固定,通过喷射泵240而循环的阳极废气的循环流量满足燃料电池的加湿所需要的流量。
这样,通过喷射泵240使阳极废气在燃料电池堆110中循环,同时抑制对于燃料电池堆110的阳极气体压力的脉动,从而可以一边维持MEA11的湿润状态,一边抑制MEA11的耐久性降低。
图10是表示阳极气体压力的脉动幅度ΔP与燃料电池的耐久性的关系的图。这里,纵轴表示由于脉动幅度ΔP在MEA11中产生的应力的临界值(临界应力),横轴以对数表示在MEA11中产生的应力的反复次数(脉动次数)N。
在燃料电池堆110中,MEA11中产生的应力在阳极气体扩散部21和阳极气体通道24的边界部分和在阳极气体通道24的外周部分等设置的气体密封构件中特别大。假设,若在这些部位产生超过临界应力的应力,则气体密封构件破裂,阳极气体和生成水等泄漏。
如图10所示,越增加脉动次数N,MEA11的临界应力越低。即,越增加脉动次数N,燃料电池堆110的耐久性越低。
例如,在以脉动幅度ΔP1使阳极气体压力脉动时,在MEA11中可容许的脉动次数直至N1。另一方面,在以比脉动幅度ΔP1窄的脉动幅度ΔP2使阳极气体压力脉动时,在MEA11可容许的脉动次数为N2。因此,通过使脉动幅度从ΔP1抑制为ΔP2,能够将脉动次数N增加至1位数以上。
因此,通过如图6所示那样,要求负载Lreq越大,越缩窄阳极气体压力的脉动幅度ΔP,抑制临界应力的降低,所以可以抑制燃料电池堆110的耐久性的降低。
接着,参照图11以及图12说明本实施方式中的燃料电池系统100的动作。
图11是表示控制本实施方式的燃料电池系统100的控制方法的一个例子的流程图。
首先,在燃料电池系统100的起动开关从关断(OFF)切换至导通(ON)时,控制器400执行燃料电池系统100的起动处理。
然后,在步骤S901中,控制器400获取表示从第2压力传感器420输出的阳极气体的压力P2的检测信号。
之后,在步骤S902中,控制器400获取对燃料电池堆110要求的负载(发电电力)Lreq。例如,要求负载Lreq根据在油门行程传感器510中检测的踩下量来计算。
在步骤S910中,控制器400根据获取的要求负载Lreq,执行为了使阳极气体的压力P2脉动而决定的脉动控制。关于脉动控制的细节,参照图12在后叙述。
之后,在步骤S903中,控制器400判断燃料电池堆110的运转是否已被停止。例如,控制器400在检测到燃料电池系统100的起动开关被切换为关断时,判断为燃料电池堆110的运转已被停止。
然后,控制器400在判断为燃料电池堆110的运转未停止的情况下,返回步骤S910,重复步骤S910的处理,直至停止燃料电池堆110的运转。另一方面,控制器400在判断为燃料电池堆110的运转已被停止的情况下,结束燃料电池系统100的控制方法。
图12是表示关于在控制器400中执行的阳极气体压力的脉动控制S910的处理步骤例的流程图。
在步骤S911中,若在步骤S902中获取了要求负载Lreq,则控制器400参照图6所示的脉动控制图,求与要求负载对应的脉动上限压力P2_up以及脉动下限压力P2_dn。
步骤S912中,控制器400将阳极气体目标压力Pt设定为脉动上限压力P2_up。
然后,在步骤S913中,控制器400打开阳极调压阀230。在本实施方式中,控制器400将阳极调压阀230的开度设定为全开。由此,第2压力传感器420中检测的阳极气体的压力P2上升。而且,控制器400也可以将阳极调压阀230的开度设定为全开全闭之间的规定值。
在步骤S914中,控制器400判断从第2压力传感器420输出的检测值P2是否已上升至脉动上限压力P2_up。然后,在阳极气体的压力P2未达到脉动上限压力P2_up的情况下,控制器400返回步骤S913,将阳极调压阀230维持为打开的状态,直至阳极气体的压力P2达到脉动上限压力P2_up。
在步骤S915中,在第2压力传感器420的检测值达到脉动上限压力P2_up时,控制器400将阳极气体目标压力Pt从脉动上限压力P2_up切换为脉动下限压力P2_dn。
然后,在步骤S916中,控制器400关闭阳极调压阀230。在本实施方式中,控制器400将阳极调压阀230的开度设定为全闭。而且,控制器400也可以不将阳极调压阀230的开度设定为全闭,而是设定为比在步骤S913中设定的开度小的值。
在步骤S916中,若阳极调压阀230被关闭,则不对燃料电池堆110供给阳极气体。在该状态下,在燃料电池堆110内与要求负载Lreq相当的阳极气体通过发电反应被消耗,所以阳极气体的压力P2下降。
在步骤S917中,控制器400判断从第2压力传感器420输出的检测值P2是否已降低至脉动下限压力P2_dn。然后,控制器400在阳极气体的压力P2未达到脉动下限压力P2_dn的情况下,返回步骤S916,将阳极调压阀230维持为关闭的状态,直至阳极气体的压力P2达到脉动下限压力P2_dn。
在第2压力传感器420的检测值达到脉动下限压力P2_dn时,阳极气体压力的脉动控制结束,返回图11所示的燃料电池系统100的控制方法,进至步骤S903。
这样,通过使用第2压力传感器420使阳极气体的压力P2正确地脉动,从喷射泵240对燃料电池堆110可靠地供给含有水蒸气的阳极废气,所以可以可靠地加湿MEA11。因此,可以更可靠地降低燃料电池堆110的发电性能的下降。
而且,在本实施方式中,说明了使用第2压力传感器420将阳极气体的压力P2升压的例子,但是也可以将阳极调压阀230设为打开的状态的时间,即阳极气体的供给时间固定为规定的时间而将压力P2升压。例如,规定的时间设定为在执行脉动控制的要求负载的全范围,阳极气体的压力P2从脉动下限压力P2_dn达到脉动上限压力P2_up。
在固定了阳极气体的供给时间的燃料电池系统中,与要求负载Lreq的大小无关,对燃料电池堆110供给的阳极气体的流量都固定。因此,在要求负载Lreq小时,对燃料电池堆110剩余地供给阳极气体,所以在燃料电池堆110中为了消耗剩余部分的阳极气体而需要时间。
另一方面,要求负载Lreq越大,燃料电池堆110中的阳极气体的消耗量越增加,所以被剩余地供给的阳极气体的流量越减少。因此,如图9(A)以及图9(B)所示,要求负载Lreq越大,从关闭阳极调压阀230至阳极气体的压力P2达到脉动下限压力P2_dn为止的无供给时间Tns越短,所以阳极气体压力的降低幅度变小。因此,要求负载Lreq越大,可以越减小脉动幅度ΔP。
这样,通过将打开阳极调压阀230的时间固定为固定的时间,可以通过简易结构,一边使阳极气体的压力脉动,一边根据要求负载Lreq减小脉动幅度ΔP。
而且,在本实施方式中,说明了通过使用第2压力传感器420使对燃料电池堆110供给的阳极气体的压力P2脉动,使对喷射泵240供给的阳极气体的供给压力P1脉动的例子。但是,也可以使用第1压力传感器410使供给压力P1脉动。
按照本发明的第1实施方式,燃料电池系统100对燃料电池堆110供给阳极气体以及阴极气体,同时根据负载使燃料电池堆110发电。燃料电池系统100包括:调整来自阳极气体供给通道220的阳极气体的压力的阳极调压阀230、以及使伴随发电的、包含水蒸气的阳极废气在燃料电池堆110中循环的喷射泵240。
喷射泵240通过从阳极调压阀230排出的阳极气体,吸引被排出到阳极气体排出通道250的阳极废气,使吸引的阳极废气在燃料电池堆110中循环。然后,控制器400通过阳极调压阀230,使对喷射泵240供给的阳极气体的压力脉动。
由此,通过喷射泵240可靠地吸引阳极废气,所以可以向燃料电池堆110充分地循环阳极废气。即,可以确保通过喷射泵240向燃料电池堆110循环的阳极废气的循环流量。因此,可以高效地消耗剩余的阳极气体。
此外,通过使阳极废气充分地向燃料电池堆110循环,阳极废气中包含的水蒸气被大量地提供给燃料电池堆110,所以可以抑制燃料电池堆110内的MEA11的干燥。因此,能够不在燃料电池系统中设置加湿阴极气体的加湿器,将燃料电池堆110维持在适于发电的湿润状态。因此,可以通过简单的结构,抑制燃料电池堆110的发电性能的降低。
而且,要求负载Lreq越小,对喷射泵240供给的阳极气体的供给流量越减少,所以阳极废气的循环流量降低为零。
因此,如图6所示,仅在要求负载Lreq小于规定的切换点Lsw时,控制器400将阳极气体的压力P2升压至阳极废气的循环所需要的脉动上限压力P2_up。如图7所示,切换点Lsw是根据燃料电池的加湿所需要的阳极废气的循环流量Qh决定的阈值。
由此,只要是在恒压控制中阳极废气不充分地循环的区域,就可以使阳极气体的压力P2脉动,所以可以抑制无用的脉动压控制。
另一方面,在要求负载Lreq大于切换点(阈值)时,控制器400不使阳极气体的压力P2脉动,而控制阳极调压阀240,使得阳极气体的压力P2为固定的压力。
这样,在可以充分地确保燃料电池的加湿所需要的循环流量时,通过限制或者禁止阳极气体的脉动控制,如图10所示,可以抑制燃料电池堆110的耐久性的降低。
而且,在本实施方式中,如图6所示,在从负载Lh至切换点Lsw为止的范围中,要求负载Lreq越大,控制器400越提高阳极气体的脉动下限压力P2_dn而减小脉动幅度ΔP。即,与要求负载Lreq小时相比,在要求负载Lreq大时,减小脉动幅度ΔP。
由此,要求负载Lreq越大阳极气体的脉动幅度ΔP越小,所以如图10所示,可以将脉动次数N增加1位数左右,可以抑制燃料电池堆110的耐久性降低。
而且,也可以取代要求负载Lreq,使用根据要求负载Lreq算出的阳极气体的要求流量、或对喷射泵240供给的阳极气体的供给流量的检测值等。
而且,在本实施方式中,在位于喷射泵240下游的气体供给通道220上,设置用于检测对燃料电池堆110供给的阳极气体的压力P2的第2压力传感器420。然后,控制器400将阳极气体的压力P2控制为根据要求负载Lreq决定的脉动下限压力P2_dn,将阳极气体的压力P2升压至为了加湿燃料电池堆110而决定的脉动上限压力P2_up。
这样,通过使用第2压力传感器420使阳极气体的压力脉动,可以更可靠地避免因喷射泵240而在燃料电池堆110中循环的阳极废气的循环流量的降低。
(第2实施方式)
图13是表示本发明的第2实施方式中的脉动控制图的一例的图。在图13中,用虚线表示图6中表示的脉动上限压力P2_up。
在本实施方式的脉动控制图中,在从负载L1至切换点Lsw的可循环范围中,如图7所示,直至阳极废气的循环流量为零,使脉动上限压力P2_up低于虚线表示的脉动上限压力。而且,负载L1根据图7表示的喷射泵240的循环临界点Qlim被决定。
这样,在从可以以恒压控制循环阳极废气的要求负载的下限值L1至切换点Lsw的可循环范围内,根据阳极废气的循环流量,减小脉动上限压力P2_up。
由此,在可循环范围中,与第1实施方式时相比,脉动幅度ΔP变小,所以可以一边加湿MEA11,一边抑制燃料电池堆110的耐久性的降低。
(第3实施方式)
说明本发明的第3实施方式中的燃料电池系统。本实施方式中的燃料电池系统的基本结构与图4所示的燃料电池系统100的结构相同,所以附加与燃料电池系统100的结构同一标号来进行说明。
在燃料电池堆110的MEA11为湿润的状态时,能够减少从喷射泵240提供给燃料电池堆110的阳极废气的循环流量。
因此,在本实施方式中,在控制器400中预先记录对于每个燃料电池堆110的湿润状态决定的多个脉动控制图。
图14是表示本实施方式中的燃料电池系统100的控制方法的流程图。
这里,除了图6中表示的脉动控制图,还在控制器400中记录脉动幅度抑制图,作为MEA11为湿润的状态时的脉动控制图。脉动幅度抑制图例如是使脉动控制图的切换点Lsw向低负载侧偏移规定幅度的图。
在图14中,除了图11中表示的处理,还追加从步骤S921至步骤S924的处理,所以仅对这些处理进行说明。
在步骤S921中,在步骤S902中获取了要求负载Lreq后,控制器400获取通过内部电阻测量装置520测量的燃料电池堆110的内部电阻。
而且,内部电阻测量装置520例如对燃料电池堆110的正极端子以及负极端子的双方供给同一频率的交流电流,调整交流电流的振幅,使得燃料电池堆110的正极端子和中点端子之间的交流电位差、与负极端子和中点端子之间的交流电位差一致。在两者的交流电位差一致了的状态中,内部电阻测量装置520将交流电流的振幅除以交流电位差的振幅,计算内部电阻。
在步骤S922中,控制器400根据在步骤S921中获取的内部电阻,判定燃料电池堆110是否为湿润的状态。而且,燃料电池堆110的内部电阻越小,燃料电池堆110可以估计为越湿润的状态。
在本实施方式中,在燃料电池堆110的内部电阻大于规定的湿润阈值的情况下,控制器400判定为燃料电池堆110的内部不是湿润的状态。另一方面,在燃料电池堆110的内部电阻为湿润阈值以下的情况下,控制器400判定为燃料电池堆110的内部为湿润的状态。而且,通过实验数据等,根据燃料电池堆110充分地湿润的状态时的内部电阻值决定湿润阈值。
在步骤S923中,在判定为燃料电池堆110充分地湿润了的状态的情况下,控制器400从两个脉动控制图中,选择将切换点Lsw向低负载侧移动规定幅度的脉动幅度抑制图。根据决定了湿润阈值时的条件中为了加湿MEA11所需要的阳极废气的循环流量,决定规定幅度。
另一方面,步骤S924中,在判定为燃料电池堆110不为湿润的状态的情况下,控制器400从两个脉动控制图中,选择图6中表示的脉动控制图。
然后,在步骤S910中,控制器400参照选择的脉动控制图,根据要求负载Lreq使对燃料电池堆110供给的阳极气体的压力P2脉动。然后,在步骤S903中燃料电池堆110的运转被停止时,本实施方式中的燃料电池系统的控制方法结束。
而且,在本实施方式中,说明了根据燃料电池堆110的内部电阻判定燃料电池堆110的湿润状态的例子,但是也可以根据燃料电池堆110的温度和冷却水的温度判定燃料电池堆110的湿润状态。例如,根据燃料电池堆110的发电量越多,水的生成量越多,同时燃料电池堆110的温度上升的事实,利用该关系判定燃料电池堆110的湿润状态。
而且,在会产生水溢满燃料电池堆110内的阳极气体通道24的状态,会引起所谓的溢流时,也可以使用用于对阳极气体的压力P1进行恒压控制的恒压控制图。
例如,在步骤S922中,在燃料电池堆110的内部电阻小于比湿润阈值小的规定的溢流阈值的情况下,控制器400选择恒压控制图。由此,可以抑制由于阳极废气的循环而引起溢流。
图15是表示控制器400中记录的脉动幅度抑制图的一例的图。在图15中,用虚线表示图6中所示的脉动上限压力P2_up。
在MEA11充分地湿润时,可以减少从喷射泵240排出的阳极废气的循环流量,所以能够将切换点Lsw2比切换点Lsw设定在近低负载侧。
在脉动幅度抑制图中,由于MEA11为湿润的状态,所以切换点Lsw2比图6所示的切换点Lsw被设定在低负载侧。
因此,要求负载Lreq的变动范围的脉动压供给的比例变小,另一方面恒压供给的比例变大,所以与图6所示的脉动控制图时相比,可以减少进行脉动控制的机会。因此,可以使燃料电池堆110的耐久性提高。
进而,在脉动幅度控制图中,脉动上限压力P2_up被设定得比图6所示的脉动上限压力低。由此,与图6所示的脉动控制图时相比,脉动幅度ΔP变小,所以可以进一步抑制燃料电池堆110的耐久性的降低。
按照本发明的第3实施方式,控制器400根据燃料电池堆110的湿润状态,变更使对燃料电池堆110供给的阳极气体的压力脉动的切换点Lsw。
即,在MEA11为湿润的状态时,与MEA11干燥的状态时相比,控制器400减小切换点Lsw。具体地说,燃料电池堆110的内部电阻越小,控制器400从多个脉动控制图中选择切换点越小的脉动幅度抑制图。
由此,与第2实施方式相比,可以抑制脉动控制造成的燃料电池堆110的耐久性的降低。
(第4实施方式)
图16是表示本发明的第4实施方式中的脉动幅度图的一例的图。这里,横轴表示要求负载Lreq,纵轴表示阳极气体压力的脉动幅度ΔP。脉动幅度图被记录在控制器400中。
在本实施方式中,控制器400参照脉动幅度图,计算与要求负载Lreq相对应的脉动幅度ΔP。与此同时,控制器400参照图6所示的脉动控制图,计算与要求负载Lreq相对应的脉动下限压力P2_dn,通过对该脉动下限压力P2_dn加上脉动幅度ΔP,计算脉动上限压力P2_up。
这样,控制器400求脉动上限压力P2_up以及脉动下限压力P2_dn,通过将它们交替地设定为阳极气体的目标压力Pt,使阳极气体的压力P2脉动。
如图16所示,燃料电池堆110的内部电阻越小,MEA11为越湿润的状态,所以脉动幅度ΔP被设定为越小的值。因此,可以在低负载侧减小脉动幅度ΔP为零的点,即脉动控制图的切换点Lsw。
按照本发明的第4实施方式,控制器400根据MEA11的湿润状态减小阳极气体压力的脉动幅度ΔP,所以可以抑制燃料电池堆110的耐久性降低。
而且,在本实施方式中,说明了将从脉动幅度图求得的脉动幅度ΔP加上脉动下限压力P2_dn来计算脉动上限压力P2_up的例子,但是不限于此。
例如,控制器400可以从图6所示的脉动上限压力P2_up减去由脉动幅度图求出的脉动幅度ΔP,计算脉动下限压力P2_dn。在该情况下,与第4实施方式相比,可以较多地确保从喷射泵240供给的阳极废气的循环流量,所以容易一边抑制燃料电池堆110的耐久性的降低,一边维持MEA11的湿润状态。
如从第1实施方式至第4实施方式中叙述的那样,控制器400使对喷射泵240供给的阳极气体的压力脉动,以便将图7所示的燃料电池的加湿所需要的阳极废气的循环流量Qh提供给燃料电池堆110。进而,控制器400在燃料电池堆110充分地湿润的状态中减小循环流量Qh,而且,根据伴随燃料电池堆110的温度上升的阳极废气中的水蒸气的增加,减小循环流量Qh。
以上,说明了本发明的实施方式,但是上述实施方式只不过表示了本发明的适用例的一部分,没有将本发明的技术的范围限定于上述实施方式的具体的结构的意思。
例如,在本实施方式中,说明了使用第2压力传感器420的检测信号使阳极气体的压力P2脉动的例子,但是也可以在控制器400中包括计测计数器,根据经过时间相互切换脉动上限压力P2_up和脉动下限压力P2_dn。例如,每当经过由实验等确定的切换时间,控制器400将阳极气体目标压力Pt从脉动下限压力P2_dn切换至脉动上限压力P2_up,在经过了预先确定的升压时间后,返回脉动下限压力P2_dn,重置计测计数器。
而且,在本实施方式中,说明了仅设置一个喷射泵240的例子,但是也可以设置多个喷射泵240。由此,可以使脉动控制图的切换点Lsw向低负载侧偏移。
而且,阳极调压阀230既可以是开关(ON/OFF)阀门,也可以是电磁阀门。
而且,上述实施方式可适当组合。