用于主动组件的电磁屏蔽和热管理的方法与流程

文档序号:11452785阅读:242来源:国知局

本发明涉及一种用于主动组件的电磁屏蔽与热管理的方法。



背景技术:

电子消费装置变得越来越强大,越来越小并且越来越快。这对于如智能手机的手持装置尤其如此,归功于其巨大功能性以及其相对较小的尺寸,所述手持装置已变得极其流行。所述装置的性能依赖于高时钟速度和小集成电路模块。

高时钟速度的前提条件为在整个电磁波谱中产生电磁发射的高信号速度。确切地说,当电路(主动组件)非常接近彼此安置时,需要对所述发射进行屏蔽。

高信号强度和电磁发射可能引起对电子组件的运作的干扰。这一现象有时被称为电磁干扰(emi)或串扰。屏蔽广泛用于避免此类干扰。

电子装置中的许多组件类型需要此类屏蔽。举例来说,构成模块的子模块可能需要受到屏蔽而免遭emi透射。

用于主动组件的磁emi或电emi屏蔽的各种方法为已知的。当前,这主要由金属罐来完成。然而,这一技术增加空间需求,其对于小型化的趋势有所不利。

美国专利8,062,930b1解决降低用于屏蔽的罐的空间需求的需要。描述为一种具有电磁屏蔽的子模块的制造过程。首先,形成具有针对两个或更多个子模块的电路的元模块。将包覆模制主体置放于针对全部子模块的电路的上方。进一步分割元模块的包覆模制主体以暴露子模块中的每一个周围的金属层栅格。随后,将电磁屏蔽材料涂覆到子模块中的每一个的包覆模制主体的外表面并且与金属层栅格接触。随后将元模块单一化以形成具有两个或更多个子模块的模块。

那些金属化封装主动组件的一个至关重要的要求为保护封装的i/o(电输入/输出)侧免遭其它金属化,因为这将导致i/o短路。

相关应用为使用保形单侧金属化层热管理或耗散由主动组件产生的热量。与主动组件的电功率消耗相关的未耗散的热量可能会累积到高温(超过150℃),最终损坏或破坏主动组件或芯片的功能性。emi屏蔽应用中有所相似,必须保护i/o侧免遭其它金属化以防止i/o短路。

因此,需要保形单侧屏蔽工艺,其能够有效地并且选择性地屏蔽小型装置并且其并未明显增加电子组件的大小。



技术实现要素:

这一目标通过一种形成用于主动组件(衬底)的电磁屏蔽与热管理的金属层的方法得到解决,所述方法优选通过湿式化学金属电镀实现,所述方法包含以下步骤:

(i)提供至少一个主动组件10,所述主动组件具有前侧11、后侧14和侧壁20,所述前侧11包含通过模制化合物的层13封入的至少一个芯片12;

(ii)在后侧上形成保护层15;

(iii)在前侧11上并且任选地在侧壁20上形成位于模制化合物的层13上的增粘层16;

(iv)在增粘层上形成至少一个金属层17

通过湿式化学金属电镀工艺在增粘层上形成至少一个金属层17。

附图说明

图1显示一种形成用于根据本发明的电磁屏蔽与热管理的金属层的方法。

具体实施方式

根据本发明的方法基于化学增粘剂,其中通过模制化合物封入的组件直接涂布有金属层或通过湿式化学电镀法直接涂布有金属层。用于提供无电式铜或铜合金层或镍或镍合金层的方法尤其合适。通过这一方法空间需求降到最低。另外,这一工艺适合于电子器件和印刷电路板(pcb)行业的现有基础建设。

在用湿式化学电镀法将模制化合物金属化方面存在数种挑战。首先,模制化合物具有高填充剂含量(70-90wt%)以及介于数纳米至数十微米范围内的宽尺寸分布。其次,模制化合物不同于积聚树脂,其对于粘附于电镀金属尚未得到优化并且甚至含有抵抗粘附的蜡状脱模剂。出于这一原因,例如通过水溶液中的如高锰酸钾的高锰酸盐进行的经典去污,随后进行无电式种晶,可获得对典型模制化合物的最多2n/cm的最大粘附度。在大多数电子器件应用的后续处理步骤中,这一粘附度尚不足以防止脱层。

优选地,在本发明的方法中,以模制化合物的总重量计,模制化合物包含50到95wt%玻璃填充剂,更优选地,模制化合物包含50到95wt%氧化硅(作为玻璃填充剂)。更优选地,模制化合物不为积聚树脂。

通过根据本发明的方法,可将金属层沉积,其显示出具有高达5n/cm的粘附强度的高粘附度。电镀金属层极好地经受住如回焊冲击的热可靠性测试(在260℃的温度下)和hast处理。通过根据本发明的方法所获得的金属层未展现出脱层或明显的粘附度损失。

本发明涉及提供用于主动组件的电磁屏蔽与热管理的改良方法。

可用根据本发明的方法来处理各种emc(环氧模制化合物)主动组件(衬底)。举例来说,衬底选自预分割的条带、含焊球的单一化芯片或不含焊球的单一化芯片。

主动组件(衬底)通常首先在去离子水或标准清洁浴中进行清洁以从表面去除松散碎屑和颗粒。

其它预处理可包括在含有如高锰酸钾或高锰酸钠的氧化剂的溶液中进行等离子清洁或蚀刻。此类方法在所属领域中是众所周知的。

在其之后乃至在清洁步骤之前,为避免与后续处理溶液接触并且由于后侧不应受到金属化,对主动组件(衬底)的后侧(图1,14)加以保护。进入的单一化芯片/条带(经w型分割的/经进一步分割的(w/sub-diced))在其后侧(i/o侧保护)上一般具有阻焊剂、金属表面处理或焊球(图1,18)。必须保护这一侧面避开根据本发明的方法中所用的处理溶液,例如避开湿式化学金属电镀溶液。在制造中,这一保护为关键要求并且可例如通过施加粘合胶带、uv可剥胶带和一层临时油墨或临时密封垫来实现。粘合胶带可为带有舒适硅酮基底粘合胶带的聚酯膜胶带(例如3mcircuitplatingtape851),其通过真空层压加以施加。

临时油墨为市售产品并且例如可购自勒克沃克彼得斯股份两合公司(lackwerkepetersgmbh+cokg)。合适的系列产品为来自勒克沃克彼得斯的sd2955。这些产品还用作可易于去除的可剥阻焊层(soldermask)。所属领域的技术人员可根据待覆盖的衬底材料和特定应用来选择最合适的可剥油墨。

粘合胶带可用于形成主动组件(衬底)10的后侧的保护层15,参见图1。可以箔片形式提供胶带,其自衬底的后侧上的鼓状物来施加。将在步骤(iv)之后经由用uv光处理来进行去除,其使得胶带无粘性。

如果主动组件(衬底)10的后侧14含有焊球18,那么通过施加胶带不可能形成保护层,因为胶带无法提供有效的表面密封,并且处理液体可渗入在内并且开始与衬底材料的后侧接触。如果焊球与后侧连接,那么优选使用可剥离油墨来形成保护层。在这一实施例中,主动组件的后侧14置放于油墨表面上方并且将油墨按压于表面内以形成紧密保护层。

其后,将化学增粘剂涂覆到衬底的未受保护的前侧11并且任选地涂覆到侧壁20以形成粘附层16。化学增粘剂优选包含一种或多于一种有机化合物,更优选地选自一种或多种硅烷化合物。这一增粘剂还涂覆到增粘层。更优选地,增粘剂和增粘剂层各自不含铁、镍和锌。

硅烷化合物更优选为有机硅烷化合物。有机硅烷化合物以溶液形式涂覆,优选为具有高沸点的有机溶剂的溶液,其沸点优选在60到250℃范围内并且更优选在80到200℃范围内。本发明含义内的有机溶剂为适于溶解硅烷化合物的极性有机溶剂。

合适的有机溶剂包含醇、醚、胺和乙酸酯。实例为乙醇、2-丙醇、四氢呋喃、乙二醇、二乙二醇、2-异丙氧基乙醇(ippe)、二(丙二醇)甲醚乙酸酯(dpgmea)、2-乙基-1-己醇、甘油、丁内酯(butyrolacton)、n-甲基吡咯烷酮(nmp)、二甲基甲酰胺、二甲基乙酰胺、乙醇胺、丙二醇甲醚乙酸酯(pma)、乙二醇的半醚(halfether)和半酯(halfester)。

有机硅烷化合物的浓度可取决于应用和特定化合物而在广泛范围内变化。可通过常规实验获得合适的浓度。合适的浓度一般在低至0.1wt%到30wt%之间,优选在0.5wt%到20wt%之间,甚至更优选在1wt%与8wt%之间变化。

根据方法步骤(iii)使介电衬底与含有有机硅烷化合物的溶液接触是通过将衬底浸渍或浸没于所述溶液中或通过喷涂溶液到衬底上来进行。根据方法步骤(iii)使衬底与含有有机硅烷化合物的溶液接触至少一次。或者,所述接触可进行数次,优选在2到10次之间,更优选在2到5次之间,甚至更优选在1到3次之间。

根据方法步骤(iii)使衬底与含有有机硅烷化合物的溶液接触持续10秒到20分钟,优选10秒到10分钟,最优选10秒到5分钟范围内的时间段。

根据方法步骤(iii)在15到100℃,优选20到50℃,最优选23到35℃范围内的温度下使衬底与含有有机硅烷化合物的溶液接触。

硅烷类增粘剂层的厚度可变化并且通常具有5到100nm之间的厚度。

有机硅烷化合物优选选自由下式表示的群组:

a(4-x)sibx

其中

每一a独立地为可水解基团,

x为1到3,并且

每一b独立地选自由以下组成的群组:c1-c20烷基、芳基、氨基芳基和由下式表示的官能团:

cnh2nx,

其中

n为0到15,优选为0到10,甚至更优选为1到8,最优选为1、2、3、4,并且

x选自由以下组成的群组:氨基、酰氨基、羟基、烷氧基、卤基、巯基、羧基、羧基酯、甲酰胺、硫甲酰胺、酰基、乙烯基、烯丙基、苯乙烯基、环氧基、环氧环己基、缩水甘油氧基(glycidoxy)、异氰酸基(isocyanato)、硫氰酸基、硫异氰酸基、脲基、硫脲基、胍基、硫缩水甘油氧基、丙烯酰氧基、甲基丙烯酰氧基;或x为羧基酯的残基;或x为si(or)3,并且其中r为c1-c5烷基。

优选地,可水解基团a选自由以下组成的群组:-oh、-or1(并且其中r1为c1-c5烷基)、-(ch2)yor2(并且其中y为1、2或3并且r2为h或c1-c5烷基)、-ocor3(并且其中r3为h或c1-c5烷基)。

如果b为烷基,那么其优选为c1-c10烷基,甚至更优选为c1-c5烷基,如甲基、乙基、丙基或异丙基。优选的芳基为经取代或未经取代的苯基和苯甲基。优选氨基芳基为-nh(c6h5)。

本发明含义内的官能团x可进一步官能化。举例来说,x=氨基包含经烷基胺或芳基胺取代的胺,如3-(n-苯乙烯基甲基-2-氨基乙氨基)。

关于为si(or)3的官能团x,r优选为甲基、乙基、丙基或异丙基。

上式内化合物的特定类别的实例为乙烯基硅烷、氨基烷基硅烷、脲基烷基硅烷酯、环氧基烷基硅烷和甲基丙烯酰烷基硅烷酯,其中反应性有机官能团分别为乙烯基、氨基、脲基、环氧基和甲基丙烯酰氧基。乙烯基硅烷的实例为乙烯基三氯硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基-三-(β(2)-甲氧基乙氧基)硅烷和乙烯基三乙酰氧基硅烷。作为用于本发明中的优选有机硅烷的氨基烷基硅烷的实例为γ(3)-氨基丙基三乙氧基硅烷、γ-氨基丙基三甲氧基硅烷、n-β-(氨基乙基)-γ-氨基丙基三甲氧基硅烷和n'-(β-氨基乙基)-n-(β-氨基乙基)-γ-氨基丙基三甲氧基硅烷。合适的脲基烷基硅烷酯为γ脲基烷基三乙氧基硅烷,而合适的乙氧基烷基硅烷为β-(3,4-环氧环己基)-乙基三甲氧基硅烷和γ缩水甘油氧基丙基三甲氧基硅烷。适用的甲基丙烯酰氧基硅烷酯为γ-甲基丙烯酰氧基丙基三甲氧基硅烷和γ-甲基丙烯酰氧基丙基-三-(β-甲氧基乙氧基)硅烷。

至少一种有机硅烷化合物可为单体有机硅烷化合物或通过在沉积于介电衬底的表面上之前根据本发明的单体有机硅烷化合物(部分)水解和缩合而获得的寡聚有机硅烷化合物。

有机硅烷化合物的水解和缩合在所属领域中为众所周知的。举例来说,单体有机硅烷化合物与例如乙酸或稀盐酸的酸性催化剂反应,产生衍生自单体有机硅烷化合物的寡聚有机硅烷化合物的澄清溶液。

所述通过水解衍生自根据本发明的单体有机硅烷化合物的寡聚硅烷应包括于本发明的范围内。

任选地,可在这一方法步骤之后热处理衬底。此类处理一般在60-200℃,更优选80-150℃之间的温度下进行。处理时间可例如在1与30分钟之间,优选在1与10分钟之间变化。

其后,对含增粘剂层的主动组件(衬底)的前侧11和任选的侧壁20进行处理以提供第一导电晶种层17。

根据步骤(iv)形成至少一个金属层例如包含

iva.使衬底与贵金属胶体或含有贵金属离子的溶液接触;

ivb.使衬底与至少一种无电式金属电镀溶液接触以形成第一金属层;

ivc.任选地,使衬底与至少一种电解金属电镀溶液接触以形成第二金属层;以及

ivd.任选地,使衬底与至少一种电解金属电镀溶液接触以形成第三金属层。

可例如通过喷涂溶液进行涂覆以提供第一导电晶种层或通过浸渍衬底于溶液中以提供第一导电晶种层。

对于步骤(iv),所属领域的技术人员已知通过应用湿式化学电镀法将金属电镀于衬底上的数种方法。根据本发明,湿式化学电镀法优选为电解电镀法、浸镀工艺或无电式电镀法。

在本发明方法的步骤(iv)中,最优选为通过湿式化学金属电镀工艺在增粘层上形成至少一个金属层17。

含增粘层的衬底表面可在活化之后通过使用无电式金属化法或者通过使用直接电镀法(电解电镀法)得到金属化。针对后续金属电镀典型地活化如主动组件的衬底如下进行:

第一金属层优选包含铜或铜合金并且通过无电式电镀沉积。在这一情况下,衬底优选通过在无电式沉积铜之前例如沉积含有贵金属的胶体或包含贵金属离子的溶液来活化。最优选活化通过沉积钯-锡胶体或钯离子。此类方法在所属领域中得到确立并且为所属领域的技术人员所已知。

第一金属层可包含镍而非铜。镍包括镍合金,如镍硼合金和镍铁合金。

对于无电式金属化,在加速或用还原剂溶液处理之后可首先冲洗对象或衬底并且接着用镍进行无电式电镀。合适的镍浴含有多种物质,包括作为还原剂的硫酸镍、例如次磷酸钠的次磷酸盐和有机络合剂,例如柠檬酸钠,以及ph调节剂(例如缓冲剂)。

作为替代方案,可使用无电式铜浴,其通常含有铜盐,例如硫酸铜或氯化铜,并且还含有如甲醛的还原剂,并且还含有一种或多种络合剂,如edta(乙二胺四乙酸盐(ethylenediaminetetraacetate))、柠檬酸、酒石酸,以及如氢氧化钠的ph调节剂。

其后,可通过无电式或电解沉积技术沉积第二金属层,其也被称为化学镀(galvanicplating)。此类第二金属层是否为需要的并且何种层厚度为最合适的要取决于emi屏蔽要求或热管理需求。一般来说,用于热管理应用的金属层厚度高于emi屏蔽应用的金属层厚度。衬底优选含有至少第二金属层并且可任选地含有其它金属层。

在一些情况下,优选通过无电式沉积技术将第二金属层沉积于第一金属层上。更优选地,通过无电式沉积技术沉积第一和第二金属层。甚至更优选地,(i)第一金属层包含铜或铜合金并且通过无电式电镀沉积并且(ii)第二金属层包含镍或镍合金,并且通过无电式电镀沉积于第一金属层上。

在另一情况下,以下为优选的:(i)第一金属层包含(i-a)镍或镍合金(优选镍)或(i-b)铜或铜合金(优选铜),并且通过无电式电镀沉积,并且(ii)第二金属层包含(ii-a)镍或镍合金或(ii-b)铜或铜合金,并且通过电解电镀沉积于第一金属层上。第二金属层优选包含镍合金,更优选镍/铁合金。

在另一情况下,以下为优选的:(i)第一金属层包含(i-a)镍或镍合金(优选镍)或(i-b)铜或铜合金(优选铜),并且通过无电式电镀沉积,并且(ii)第二金属层包含(ii-a)铜或铜合金或(ii-b)锡或锡合金,并且通过浸镀(即置换反应)沉积于第一金属层上。第三金属层包含(iii-a)镍或镍合金或(iii-b)铜或铜合金,并且通过电解电镀沉积于第二金属层上(即在浸镀之后所存在的层上)。第三金属层优选包含铜或铜合金,更优选铜。第四金属层包含(vi-a)镍或镍合金或(vi-b)铜或铜合金,并且通过无电式电镀或电解电镀沉积于第三金属层上。优选地,第四金属层通过电解电镀沉积,所述层优选包含镍合金,更优选镍/铁合金。

最优选为:(i)第一金属层包含(i-a)镍或(i-b)铜,并且通过无电式电镀沉积,并且(ii)第二金属层包含(ii-a)镍或(ii-b)铜或(ii-c)镍/铁合金,并且通过电解电镀沉积于第一金属层上,第二金属层优选包含(ii-c)镍/铁合金。

在另一特定情况下,至少三个金属层为优选的(优选仅沉积三个金属层)。沉积顺序优选如下:通过无电式电镀沉积第一金属层,其后通过电解沉积将第二金属层沉积于第一金属层上,其后通过无电式电镀将第三金属层沉积于第二金属层上。沉积顺序更优选如下:第一金属层包含镍或镍合金(优选镍)并且通过无电式电镀沉积,其后第二金属层包含铜或铜合金(优选铜)并且通过电解沉积沉积于第一金属层上,其后第三金属层包含镍或镍合金(优选镍)并且通过无电式电镀沉积于第二金属层上。

任何金属沉积浴都可用于后续电解金属化,例如用于沉积镍、铜、银、金、锡、锌、铁、铅或其合金。此类型的沉积浴为所属领域的技术人员众所周知的。通常使用瓦特镍浴(wattsnickelbath)作为亮镍浴,其含有硫酸镍、氯化镍和硼酸以及糖精作为添加剂。作为亮铜浴,使用例如含有硫酸铜、硫酸、氯化钠以及有机硫化合物作为添加剂的组合物,其中硫,例如以有机硫化物或二硫化物的低氧化阶段形式存在。

如果使用直接电镀工艺,即第一金属层并非无电式沉积,而是在用转化溶液处理对象或衬底后并且在任选的后续冲洗处理之后电解沉积,那么使用电解金属化浴,例如镍打底浴(nickelstrikebath),其优选基于瓦特镍浴而形成。这些类型的浴例如含有硫酸镍、氯化镍和硼酸以及糖精作为添加剂。

出于本发明的目的,对作为金属的铜和镍进行电解电镀为尤其优选的。在这些应用中,沉积金属层,优选铜和/或的总厚度一般在0.5与300μm之间变化。对于热管理应用,厚度优选在20到300μm之间,更优选在50与200μm之间的更高范围内。对于emi屏蔽应用,金属层的总厚度优选在1与100μm之间,更优选在2与50μm之间并且甚至更优选在5与30μm之间变化。

根据本发明的优选实施例,在步骤(iv)中所沉积的金属层的顺序包含:

a)铜(无电式)作为第一金属层并且铜(电解)作为第二金属层,两者都具有根据上述范围的总厚度。

b)镍(无电式)作为第一金属层并且镍(电解)作为第二金属层,两者都具有根据上述范围的总厚度。

c)镍或铜(无电式)作为第一金属层并且镍或铜(电解)作为第二金属层,两者都具有根据上述范围的总厚度。

d)镍或铜(无电式)作为第一金属层并且镍或铜(电解)作为第二和第三金属层,都具有根据上述范围的总厚度。

对于根据a)到d)的金属层,无电式层的优选厚度在0.5与20μm之间变化并且电解层的优选厚度在0.5与300μm之间变化。

就电镀金属粘附于emc来说,一个主要关注点在于金属层的内应力。高内应力降低剥落强度并且甚至可能引起局部脱层或起泡。

热处理沉积金属层大大提高金属层对于下伏衬底的剥落强度(ps)。此类热处理也被称为退火。退火为改变金属的材料特性的已知处理方法并且例如提高其延展性,减轻内应力并且通过使其均匀来改良金属结构。

此类热处理根据本发明在最终金属电镀步骤之后在以下步骤v.中进行:

v.将至少一个金属电镀层加热到100℃与300℃之间。

热处理步骤可在每一金属仅在最终金属电镀步骤之后进行。

对于这一热处理,将衬底缓慢加热到100℃与300℃之间的最高温度,优选高达250℃的最高温度并且甚至更优选高达200℃的最高温度。处理时间取决于衬底材料、电镀金属和电镀金属层的厚度而变化并且可由所属领域的技术人员通过常规实验来确定。一般来说,处理时间在5分钟与120分钟之间,优选在10分钟与60分钟之间变化,并且甚至更优选地,高达20分钟、30分钟或40分钟的处理时间为足够的。

最好的退火工艺温度取决于目标性能、树脂tg或可接受的氧化程度。

优选地,退火之后,将后侧14上的保护层15去除。或者,可在步骤(iii)中在金属化之后去除保护层。其后,对衬底进行完全分割。

实例

以下实验意欲说明本发明的益处而不限制其范围。

在实验中采用氨基丙基三乙氧基硅烷作为有机硅烷化合物。异丙醇用作有机溶剂。

在实例中使用两种主动组件(衬底)的材料,两者都为填有二氧化硅的环氧树脂类材料。衬底材料1为住友e770d(sumitomoe770d)(表2中表示为a)和日立cel(hitachicel)(表2中表示为b)。使用衬底材料的两种不同批次(表2中的批次1和批次2)。从每一批次中处理总共4个样品。值提供于表2中并且从4个样品当中测量平均剥落强度值。

在喷涂之前新制造溶液。针对所进行的全部实验的硅烷含量为1wt%。

硅烷涂覆:使用思诺泰(sonotek)的exactacoat喷涂装置将溶液喷涂于衬底上。对于所有研究,设定以下参数:

一次喷涂循环。

喷涂之后即刻在125℃下烘烤样品15分钟。

可任选地在硅烷涂覆到衬底表面之前或之后在高锰酸类溶液中,例如在含有45g/lmno4-和45g/lnaoh的水溶液中处理样品。

其后,根据提供于表1中的工艺参数金属电镀样品。表1包含经涂覆以最终将0.8μm无电式铜和10μm电解沉积铜沉积于衬底材料上的工艺顺序。步骤1和2(neoganth)为用于形成钯类活化层的来自德国安美特公司(atotechdeutschlandgmbh)的市售产品。

表1:用于后续金属电镀的参数

电镀金属层对衬底的剥落强度测量通过在最终退火之后将样品铺设成1cm宽和3cm长的条带来进行。用仪立信伍珀塔尔708(erichsenwuppertal708)应变计使用查迪伦(chatillon)ltcm-6抽拉机构进行剥落强度测量。全部样品的粘附度值描绘于表2中。

表2:根据本发明方法所获得的金属层的剥落强度值

所获得的剥落强度值为约4n/cm或更高并且适用于emi与热管理应用。“pstrfl”为在高温下后回焊之后所获得的剥落强度值,其用于模拟在工业工艺中的焊料操作期间出现于衬底的热冲击。根据本发明的方法提供用于形成一个或多个金属层的工艺为尤其有利的,其中此类后回焊并不会对剥落强度值造成不利影响。

参考符号

10主动组件

11主动组件的前侧

12芯片

13模制化合物的层

14主动组件的后侧

15保护层

16增粘层

17至少一个金属层

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1