鳍式场效应晶体管及其形成方法与流程

文档序号:12965553阅读:158来源:国知局
鳍式场效应晶体管及其形成方法与流程

本发明涉及半导体制造领域,尤其涉及一种鳍式场效应晶体管及其形成方法。



背景技术:

mos(金属-氧化物-半导体)晶体管,是现代集成电路中最重要的元件之一,mos晶体管的基本结构包括:半导体衬底;位于半导体衬底表面的栅极结构,所述栅极结构包括:位于半导体衬底表面的栅介质层以及位于栅介质层表面的栅电极层;位于栅极结构两侧半导体衬底中的源漏区。

随着半导体技术的发展,传统的平面式的mos晶体管对沟道电流的控制能力变弱,造成严重的漏电流。鳍式场效应晶体管(finfet)是一种新兴的多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的顶部表面和侧壁的栅极结构,位于栅极结构两侧的鳍部中的源漏区。

然而,现有技术形成的鳍式场效应晶体管的电学性能较差。



技术实现要素:

本发明解决的问题是提供一种鳍式场效应晶体管及其形成方法,以提高鳍式场效应晶体管的电学性能。

为解决上述问题,本发明提供一种鳍式场效应晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面具有鳍部,所述鳍部包括边缘区域和中心区域;形成横跨中心区域鳍部的伪栅极结构以及横跨边缘区域鳍部的阻挡结构,所述伪栅极结构包括位于鳍部顶部和侧壁上的伪栅电极层;在伪栅极结构和阻挡结构之间的鳍部中形成源漏区;形成源漏区后,在半导体衬底和鳍部上形成第一层间介质层,所述第一层间介质层覆盖伪栅极结构侧壁和阻挡结构侧壁;形成第一层间介质层后,去除伪栅电极层,形成开口;在所述开口中形成金属栅电极层。

可选的,在形成所述伪栅极结构的同时形成所述阻挡结构。

可选的,所述阻挡结构包括横跨所述边缘区域鳍部的阻挡栅介质层和位于阻挡栅介质层上的阻挡栅电极层。

可选的,所述阻挡栅介质层的材料为氧化硅或者高k介质材料;所述阻挡栅电极层的材料为多晶硅。

可选的,所述阻挡结构的电导率在3.0e-4s/m以下。

可选的,所述阻挡结构的材料为单晶硅或多晶硅。

可选的,所述伪栅极结构包括横跨中心区域鳍部的伪栅介质层和位于伪栅介质层表面的伪栅电极层;还包括:形成第一层间介质层后,去除伪栅电极层和伪栅介质层,形成开口;在所述开口中形成位于开口底部和侧壁的栅介质层和位于栅介质层上的金属栅电极层。

可选的,还包括:在所述金属栅电极层、阻挡结构和第一层间介质层上形成第二层间介质层;在所述源漏区上形成贯穿第一层间介质层和第二层间介质层的导电插塞。

可选的,还包括:所述阻挡结构和伪栅极结构的顶部表面形成有第一掩膜层;形成源漏区后,在半导体衬底和鳍部上形成第一层间介质层,所述第一层间介质层覆盖伪栅极结构侧壁、阻挡结构侧壁和第一掩膜层侧壁;在形成开口的过程中去除伪栅极结构顶部表面的第一掩膜层。

可选的,所述第一掩膜层的材料包括氮化硅、氮氧化硅或者氮碳氧化硅。

可选的,形成第一掩膜层、阻挡结构和伪栅极结构的方法包括:在所述半导体衬底上、以及边缘区域和中心区域的鳍部上形成伪栅介质材料层、位于伪栅介质材料层表面的伪栅电极材料层和位于伪栅电极材料层表面的第一掩膜材料层;图形化所述第一掩膜材料层、伪栅电极材料层和伪栅介质材料层,形成横跨中心区域鳍部的伪栅极结构、横跨边缘区域鳍部的阻挡结构、以及位于伪栅极结构和阻挡结构顶部表面的第一掩膜层。

可选的,形成所述开口的方法包括:形成第二掩膜层,所述第二掩膜层覆盖所述阻挡结构顶部表面的第一掩膜层;以所述第二掩膜层为掩膜,去除所述伪栅极结构顶部表面的第一掩膜层;去除所述第二掩膜层后,以所述阻 挡结构顶部表面的第一掩膜层为掩膜,去除伪栅电极层,从而形成开口。

可选的,所述第二掩膜层的材料包括光刻胶。

可选的,形成所述源漏区的步骤包括:去除伪栅极结构和阻挡结构之间的部分鳍部,形成凹陷;在所述凹陷内形成源漏区材料层,从而形成源漏区。

本发明还提供一种鳍式场效应晶体管,包括:半导体衬底,所述半导体衬底表面具有鳍部,所述鳍部具有边缘区域和中心区域;金属栅电极层,位于中心区域的鳍部顶部和侧壁上;阻挡结构,横跨边缘区域的鳍部;源漏区,位于金属栅电极层和阻挡结构之间的鳍部中;第一层间介质层,位于半导体衬底和鳍部上,所述第一层间介质层覆盖金属栅电极层侧壁和阻挡结构侧壁。

与现有技术相比,本发明的技术方案具有以下优点:

本发明提供的鳍式场效应晶体管的形成方法,由于在形成源漏区之前形成了阻挡结构,使得在形成源漏区的过程中,能够以阻挡结构和伪栅极结构共同限制源漏区的形成空间,避免源漏区中靠近阻挡结构的区域相对于靠近伪栅极结构的区域形成塌陷。进而避免形成金属栅电极层后,源漏区中靠近阻挡结构的区域相对于靠近金属栅电极层的区域形成塌陷,从而使得阻挡结构和金属栅电极层之间的源漏区对相应沟道的应力增加。

其次,由于在去除伪栅电极层的同时保留了阻挡结构,使得金属栅电极层不会替代阻挡结构。阻挡结构能够采用绝缘性能较好的材料,从而使得后续形成位于阻挡结构和金属栅电极层之间的导电插塞后,阻挡结构和导电插塞之间的寄生电容较小。因而降低了鳍式场效应晶体管的寄生电容。

进一步的,形成源漏区的步骤包括:去除伪栅极结构和阻挡结构之间的部分鳍部后,形成凹陷;在所述凹陷内形成源漏区材料层,从而形成源漏区。由于形成了阻挡结构,使得位于伪栅极结构和阻挡结构之间凹陷的两侧均具有凹陷侧壁,且所述凹陷侧壁暴露出鳍部。由于所述凹陷两侧的凹陷侧壁均能暴露出鳍部,使得在形成源漏区材料层的过程中,能以凹陷两侧的凹陷侧壁所暴露出的鳍部作为生长源漏区材料层的种子,使得靠近阻挡结构一侧源漏区材料层的生长速率和靠近伪栅极结构一侧源漏区材料层的生长速率一致,从而避免源漏区中靠近阻挡结构的区域相对于靠近伪栅极结构的区域形 成塌陷。进而避免形成金属栅电极层后,源漏区中靠近阻挡结构的区域相对于靠近金属栅电极层的区域形成塌陷,从而使得阻挡结构和金属栅电极层之间的源漏区对相应沟道的应力增加。

本发明提供的鳍式场效应晶体管,由于鳍式场效应晶体管具有横跨第一区域鳍部的阻挡结构,阻挡结构能够限制源漏区的形成空间,避免源漏区中靠近阻挡结构的区域相对于靠近金属栅电极层的区域形成塌陷,从而使得阻挡结构和金属栅电极层之间的源漏区对相应沟道的应力增加。

其次,金属栅电极层没有替代阻挡结构的位置。阻挡结构能够采用绝缘性能较好的材料,从而降低了鳍式场效应晶体管的寄生电容。

附图说明

图1至图4是一实施例中鳍式场效应晶体管的结构示意图;

图5至图12是本发明一实施例中鳍式场效应晶体管形成过程的结构示意图。

具体实施方式

正如背景技术所述,现有技术中形成的鳍式场效应晶体管的电学性能较差。

图1至图4是一实施例中鳍式场效应晶体管形成过程的结构示意图。

参考图1,提供半导体衬底100,所述半导体衬底100表面具有鳍部120,所述鳍部120包括边缘区域i和中心区域ⅱ;形成横跨中心区域ⅱ鳍部120的伪栅极结构132以及横跨边缘区域i鳍部的附加栅极结构131。

以伪栅极结构132的数量为3个作为示例。

参考图2,在相邻伪栅极结构132之间、伪栅极结构132和附加栅极结构131之间的鳍部中形成源漏区140;形成源漏区140后,在半导体衬底100和鳍部120上形成覆盖伪栅极结构132侧壁和附加栅极结构131侧壁的第一层间介质层150。

形成附加栅极结构131的作用为:在形成附加栅极结构131和相邻的伪栅极结构132之间的源漏区140的过程中,避免源漏区材料层靠近附加栅极 结构131一侧的生长速率小于靠近伪栅极结构132一侧的生长速率,避免附加栅极结构131和相邻的伪栅极结构132之间的源漏区140形成塌陷,从而避免相应沟道的应力减小。

参考图3,形成第一层间介质层150后,去除伪栅极结构132和附加栅极结构131,形成开口160。

参考图4,在所述开口160(参考图3)中形成金属栅极结构170;在金属栅极结构170和第一层间介质层150上形成第二层间介质层180;在源漏区140上形成贯穿第一层间介质层150和第二层间介质层180的导电插塞190。

研究发现,上述实施例中鳍式场效应晶体管的电学性能较差,原因在于:

由于在去除伪栅极结构132的同时将附加栅极结构131也一并去除,为了方便说明,将去除附加栅极结构131后形成的开口160称为第一开口,将去除伪栅极结构132后形成的开口160称为第二开口,导致在第二开口中形成金属栅极结构170的同时也会在第一开口中形成金属栅极结构170。由于在第一开口中也形成了金属栅极结构170,且金属栅极结构170中金属栅电极层的材料为金属,电导率较大,容易导致第一开口内的金属栅电极层和导电插塞190之间形成较大的寄生电容,显著增加了鳍式场效应晶体管的寄生电容。

可见,上述实施例中,在避免附加栅极结构131和相邻的金属栅极结构170之间的源漏区140对相应沟道的应力减小的同时会增加鳍式场效应晶体管的寄生电容。

在此基础上,本发明提供一种鳍式场效应晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面具有鳍部,所述鳍部包括边缘区域和中心区域;形成横跨中心区域鳍部的伪栅极结构以及横跨边缘区域鳍部的阻挡结构,所述伪栅极结构包括位于鳍部顶部和侧壁上的伪栅电极层;在伪栅极结构和阻挡结构之间的鳍部中形成源漏区;形成源漏区后,在半导体衬底和鳍部上形成第一层间介质层,所述第一层间介质层覆盖伪栅极结构侧壁和阻挡结构侧壁;形成第一层间介质层后,去除伪栅电极层,形成开口;在所述开口中形成金属栅电极层。所述方法在形成源漏区之前形成阻挡结构,在去除伪栅电极层时保留阻挡结构,使得在提高阻挡结构和金属栅电极层之间的 源漏区对相应沟道的应力的同时,减小了鳍式场效应晶体管的寄生电容,从而提高了鳍式场效应晶体管的电学性能。

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。

图5至图12是本发明一实施例中鳍式场效应晶体管形成过程的结构示意图。

参考图5,提供半导体衬底200,所述半导体衬底200表面具有鳍部220,所述鳍部220包括边缘区域ⅲ和中心区域ⅳ。

所述半导体衬底200为后续形成鳍式场效应晶体管提供工艺平台。

所述半导体衬底200可以是单晶硅、多晶硅或非晶硅;半导体衬底200也可以是硅、锗、锗化硅、砷化镓等半导体材料。本实施例中,所述半导体衬底200的材料为硅。

所述半导体衬底200表面具有鳍部220。

所述鳍部220通过刻蚀半导体衬底200而形成;或者是:在半导体衬底200上形成鳍部材料层,然后图形化所述鳍部材料层,从而形成鳍部220。

所述鳍部220包括边缘区域ⅲ和中心区域ⅳ。

所述边缘区域ⅲ位于鳍部220的两端,所述中心区域ⅳ位于边缘区域ⅲ之间。

所述半导体衬底200表面还形成有隔离结构,隔离结构的表面低于鳍部220的顶部表面,隔离结构用于电学隔离鳍部220。所述隔离结构的材料包括氧化硅或氮氧化硅。

继续参考图5,形成横跨中心区域ⅳ鳍部220的伪栅极结构232以及横跨边缘区域ⅲ鳍部220的阻挡结构231,所述伪栅极结构232包括位于鳍部220顶部和侧壁上的伪栅电极层236。

所述伪栅极结构232横跨中心区域ⅳ的鳍部220,覆盖中心区域ⅳ部分鳍部220的顶部表面和侧壁。伪栅极结构232包括横跨中心区域ⅳ鳍部220的伪栅介质层235和位于伪栅介质层235表面的伪栅电极层236。其中,伪栅介 质层235位于隔离结构表面、覆盖中心区域ⅳ部分鳍部220的顶部表面和侧壁。

所述伪栅极结构232的数量可以为一个或者多个。本实施例中,以所述伪栅极结构232的数量为3个作为示例。

所述伪栅电极层236的材料为多晶硅。

若后续去除伪栅电极层236而形成开口,那么形成开口后,伪栅介质层235构成栅介质层,故需要伪栅介质层235的材料为高k介质材料(k大于3.9)。若后续去除伪栅电极层236和伪栅介质层235而形成开口,在形成开口后,会在开口的底部和侧壁形成栅介质层,那么伪栅介质层235的材料为氧化硅。

本实施例中,以后续去除伪栅电极层236和伪栅介质层235而形成开口为示例进行说明。

所述阻挡结构231的作用为:(1)后续在形成阻挡结构231和相邻的伪栅极结构232之间的源漏区的过程中,避免源漏区材料层中靠近阻挡结构231一侧的生长速率小于靠近伪栅极结构232一侧的生长速率,避免阻挡结构231和相邻的伪栅极结构232之间的源漏区形成塌陷;(2)所述阻挡结构231能够采用绝缘性好的材料,从而使得后续形成位于阻挡结构和金属栅电极层之间的导电插塞后,阻挡结构231和导电插塞之间的寄生电容较小。

所述阻挡结构231的电导率在3.0e-4s/m(西门子/米)以下。

所述阻挡结构231的电导率选择在3.0e-4s/m以下的范围,考虑到以下因素:若所述阻挡结构231的电导率过大,导致阻挡结构231的绝缘性变差,导致后续阻挡结构231和阻挡结构231侧部的导电插塞之间形成较大的寄生电容。本实施例中,阻挡结构231的电导率选择在3.0e-4s/m以下,能够使得阻挡结构231呈弱导电性或绝缘,使得后续阻挡结构231和阻挡结构231相邻导电插塞之间的寄生电容较小甚至为零。

本实施例中,在形成伪栅极结构232的同时形成阻挡结构231,使得所述阻挡结构231包括阻挡横跨所述边缘区域ⅲ鳍部220的阻挡栅介质层233和位于阻挡栅介质层233上的阻挡栅电极层234。在其它实施例中,可以在不同 步骤中分别形成伪栅极结构和阻挡结构。

所述阻挡栅介质层233的材料为氧化硅或者高k介质材料;所述阻挡栅电极层234的材料为多晶硅。

具体的,形成伪栅极结构232和阻挡结构231的方法为:在半导体衬底200上、以及边缘区域ⅲ和中心区域ⅳ的鳍部220上形成伪栅介质材料层(未图示)和位于伪栅介质材料层(未图示)表面的伪栅电极材料层;图形化所述伪栅电极材料层和伪栅介质材料层,形成伪栅极结构232和阻挡结构231。

其中,阻挡栅介质层233对应边缘区域ⅲ的伪栅介质材料层,阻挡栅电极层234对应边缘区域ⅲ的伪栅电极材料层;伪栅介质层235对应中心区域ⅳ的伪栅介质材料层,伪栅电极层236对应中心区域ⅳ的伪栅电极材料层。

由于在形成伪栅极结构232的同时形成了阻挡结构231,使得工艺得到简化。

需要说明的是,在其它实施例中,所述阻挡结构可以为单层材料,且需要使得阻挡结构的电导率在3.0e-4s/m以下。

当所述阻挡结构为单层材料时,所述阻挡结构的材料可以为多晶硅或单晶硅。

本实施例中,阻挡结构231和伪栅极结构232的顶部表面形成有第一掩膜层240。

所述第一掩膜层240的作用为:(1)在图形化所述伪栅电极材料层和伪栅介质材料层的过程中用作硬掩膜层,避免形成的伪栅极结构232和阻挡结构231的图形失真;(2)在后续形成源漏区的过程中,避免源漏区材料层生长在阻挡结构231和伪栅极结构232的顶部表面;(3)后续以阻挡结构231顶部表面的第一掩膜层240为掩膜,去除伪栅极结构232。

所述第一掩膜层240的材料为氮化硅、氮氧化硅或者氮碳氧化硅。

本实施例中,在形成阻挡栅介质层233和伪栅极结构232的同时形成第一掩膜层240。

具体的,在形成伪栅电极材料层后,在所述伪栅电极材料层表面形成第 一掩膜材料层;在图形化所述伪栅电极材料层和伪栅介质材料层的同时图形化所述第一掩膜材料层,形成伪栅极结构232、阻挡结构231、以及位于伪栅极结构232和阻挡结构231顶部表面的第一掩膜层240。

所述第一掩膜层240对应所述第一掩膜材料层。

参考图6,在伪栅极结构232和阻挡结构231之间的鳍部220中形成源漏区250。

本实施例中,由于伪栅极结构232的数量为多个,因此还在相邻伪栅极结构232之间的鳍部220中形成了源漏区250。

本实施例中,形成所述源漏区250的步骤包括:去除相邻伪栅极结构232之间、以及伪栅极结构232和阻挡结构231之间的部分鳍部220,形成凹陷(未图示);在所述凹陷内形成源漏区材料层,从而形成源漏区250。

当伪栅极结构232的数量为一个时,仅需要去除伪栅极结构232和阻挡结构231之间的部分鳍部220,形成凹陷。

可以先外延生长初始源漏区材料层,然后对初始源漏区材料层进行离子注入,从而形成源漏区材料层;或者在外延生长初始源漏区材料层的同时原位掺杂离子,从而形成源漏区材料层。

需要说明的是,由于形成了阻挡结构231,使得位于伪栅极结构232和阻挡结构231之间凹陷的两侧均具有凹陷侧壁,且所述凹陷侧壁暴露出鳍部220。由于所述凹陷两侧的凹陷侧壁均能暴露出鳍部220,使得在形成源漏区材料层的过程中,能以凹陷两侧的凹陷侧壁所暴露出的鳍部220作为生长源漏区材料层的种子,使得靠近阻挡结构231一侧源漏区材料层的生长速率和靠近伪栅极结构232一侧源漏区材料层的生长速率一致,从而避免源漏区250中靠近阻挡结构231的区域相对于靠近伪栅极结构232的区域形成塌陷。

在本实施例中,在伪栅极结构232两侧侧壁和阻挡结构231侧壁均形成了侧墙,然后在相邻侧墙暴露出的鳍部220中形成源漏区250。

所述侧墙的作用为:(1)伪栅极结构232两侧侧壁的侧墙定义伪栅极结构232和源漏区250之间的距离;(2)在形成源漏区250的过程中,保护阻 挡结构231和伪栅极结构232的侧壁,避免源漏区材料层生长在阻挡结构231侧壁和伪栅极结构232侧壁。

在另一个实施例中,在形成源漏区之前,仅在伪栅极结构两侧侧壁形成了侧墙(未图示),然后在侧墙和伪栅极结构两侧的鳍部中形成源漏区。

参考图7,形成源漏区250后,在半导体衬底200和鳍部220上形成第一层间介质层260,所述第一层间介质层260覆盖伪栅极结构232侧壁和阻挡结构231侧壁。

由于本实施例中,由于形成了第一掩膜层240,所述第一层间介质层260覆盖伪栅极结构232侧壁、阻挡结构231侧壁和第一掩膜层240侧壁。

形成第一层间介质层260的方法为:形成覆盖伪栅极结构232、阻挡结构231、第一掩膜层240、鳍部220和半导体衬底200的第一层间介质材料层,所述第一层间介质材料层的整个表面高于第一掩膜层240的顶部表面;平坦化所述第一层间介质材料层直至暴露出第一掩膜层240的顶部表面,形成第一层间介质层260。

需要说明的是,本实施例中,形成第一层间介质材料层后,第一层间介质材料层还覆盖侧墙;平坦化所述第一层间介质材料层后,形成的第一层间介质层260覆盖侧墙侧壁。

需要说明的是,当没有形成第一掩膜层时,需要第一层间介质材料层的整个表面高于伪栅极结构和阻挡结构的顶部表面;然后平坦化所述第一层间介质材料层直至暴露出伪栅极结构的顶部表面,从而形成第一层间介质层。

所述第一层间介质层260的材料包括氧化硅或者氮氧化硅或者碳氧化硅。

接着,去除伪栅电极层236和伪栅介质层235,且保留阻挡结构231,形成开口。

下面参考图8至图11详细介绍去除伪栅电极层236和伪栅介质层235以形成开口的各个步骤。

参考图8,形成第二掩膜层270,所述第二掩膜层270覆盖所述阻挡结构231顶部表面的第一掩膜层240。

所述第二掩膜层270的材料包括光刻胶。

所述第二掩膜层270覆盖所述阻挡结构231顶部表面的第一掩膜层240,且暴露出伪栅极结构232顶部表面的第一掩膜层240。

参考图9,以所述第二掩膜层270为掩膜,去除所述伪栅极结构232顶部表面的第一掩膜层240。

去除所述伪栅极结构232顶部表面的第一掩膜层240的工艺为湿刻工艺或者干刻工艺。

参考图10,去除所述第二掩膜层270(参考图9)。

参考图11,去除所述第二掩膜层270(参考图9)后,以所述阻挡结构231顶部表面的第一掩膜层240为掩膜,去除伪栅电极层236(参考图9)和伪栅介质层235(参考图9),从而形成开口280。

以所述阻挡结构231顶部表面的第一掩膜层240为掩膜,去除伪栅电极层236和伪栅介质层235的工艺为干刻工艺、湿刻工艺或者干刻工艺和湿刻工艺的结合。

当需要去除伪栅电极层236而形成开口时,去除所述第二掩膜层270后,以所述阻挡结构231顶部表面的第一掩膜层240为掩膜,去除伪栅电极层236从而形成开口280。

如果没有形成第一掩膜层240,那么需要以第二掩膜层270为掩膜去除伪栅极结构232。由于伪栅极结构232的顶部表面容易氧化而在伪栅极结构232的顶部表面形成氧化层,一般需要先采用各向异性干刻工艺去除部分厚度的伪栅极结构232,利用去除部分厚度伪栅极结构232的各向异性干刻工艺中的轰击作用将氧化层去除,然后采用湿刻工艺将剩余的伪栅极结构232去除以减小对开口280底部的鳍部220表面的刻蚀损伤。当以第二掩膜层270为掩膜去除伪栅极结构232时,若第二掩膜层270覆盖了部分伪栅极结构232,会造成在去除部分厚度的伪栅极结构232的各向异性干刻工艺中不能去除部分的氧化层和氧化层底部的相应厚度的伪栅极结构232;在将剩余的伪栅极结构232去除所采用的湿刻工艺中,第二掩膜层270和氧化层均会阻挡去除第二掩膜层270底部的伪栅极结构232,使得伪栅极结构232难以全完去除。

本实施例中,去除所述伪栅极结构232顶部表面的第一掩膜层240,然后以阻挡结构231顶部表面的第一掩膜层240为掩膜,去除伪栅极结构232,能够降低对第二掩膜层270位置精度的要求。

具体的,由于阻挡结构231和相邻的伪栅极结构232之间的距离较小,为40nm~70nm,且受到光刻工艺精度的影响,使得在形成第二掩膜层270的过程中,容易造成第二掩膜层270覆盖阻挡结构231顶部表面的同时也覆盖第一掩膜层240和伪栅极结构232顶部表面的部分第一掩膜层240。即使在第二掩膜层270也覆盖伪栅极结构232顶部表面的部分第一掩膜层240的情况下,由于伪栅极结构232顶部表面的第一掩膜层240的体积较小,且位于伪栅极结构232上,更容易暴露在相应的刻蚀环境中,能够容易的将伪栅极结构232顶部表面的第一掩膜层240完全去除。然后将第二掩膜层270去除。去除第二掩膜层270后,利用阻挡结构231顶部表面的第一掩膜层240作为掩膜,刻蚀去除伪栅极结构232。由于阻挡结构231顶部表面的第一掩膜层240不会将伪栅极结构232覆盖,避免造成不能完全去除伪栅极结构232。即在第二掩膜层270的位置精度较差的情况下,能够保证将伪栅极结构232完全去除,从而在工艺上降低了对第二掩膜层270位置精度的要求。

参考图12,在所述开口280(参考图11)中形成金属栅极结构237;在所述金属栅极结构237、阻挡结构231和第一层间介质层260上形成第二层间介质层291;在所述源漏区250上形成贯穿第一层间介质层260和第二层间介质层291的导电插塞292。

金属栅极结构237包括位于开口280底部和侧壁的栅介质层238和位于栅介质层238上的金属栅电极层239。

所述栅介质层238的材料为高k介质材料(k大于3.9),如hfo2、la2o3、hfsion、hfalo2、zro2、al2o3或hfsio4;所述金属栅电极层239的材料为al、cu、ag、au、ni、ti、w、wn或wsi。

所述第二层间介质层291的材料包括氧化硅、氮氧化硅或者碳氧化硅。

形成第二层间介质层291的工艺为沉积工艺,如等离子体化学气相沉积工艺、低压化学气相沉积工艺或亚大气亚化学气相沉积工艺。

本实施例中,第二层间介质层291还覆盖第一掩膜层240。

所述导电插塞292的材料为金属,如钨。

所述导电插塞292的形成工艺为:在源漏区250上形成贯穿第一层间介质层260和第二层间介质层291的通孔(未图示),所述通孔露出源漏区250的表面;在所述通孔中形成导电插塞292。

当去除伪栅电极层而形成开口的情况下,形成开口后伪栅介质层构成栅介质层;然后在所述开口中形成金属栅电极层,所述金属栅电极层和所述栅介质层构成金属栅极结构;然后在所述金属栅极结构、阻挡结构和第一层间介质层上形成第二层间介质层;在所述源漏区上形成贯穿第一层间介质层和第二层间介质层的导电插塞。

由于避免了源漏区250中靠近阻挡结构231的区域相对于靠近伪栅极结构232的区域形成塌陷,使得形成金属栅电极层239后,进而避免了源漏区250中靠近阻挡结构231的区域相对于靠近金属栅电极层239的区域形成塌陷,从而使得阻挡结构231和金属栅电极层239之间的源漏区250对相应沟道的应力增加。

其次,由于在去除伪栅电极层236的同时保留了阻挡结构231,使得金属栅电极层239不会替代阻挡结构231。而阻挡结构231能够采用绝缘性较好的材料,使得阻挡结构231和相邻导电插塞292之间的寄生电容较小,从而降低了鳍式场效应晶体管的寄生电容。

相应的,本发明实施例还提供一种采用上述方法形成的鳍式场效应晶体管,请继续参考图12,包括:

半导体衬底200,所述半导体衬底200表面具有鳍部220,所述鳍部220具有边缘区域ⅲ和中心区域ⅳ;金属栅电极层239,位于中心区域的鳍部220顶部和侧壁上;阻挡结构231,横跨边缘区域ⅲ的鳍部220;源漏区250,位于金属栅极结构237和阻挡结构231之间的鳍部220中;第一层间介质层260,位于半导体衬底200和鳍部220上,所述第一层间介质层260覆盖金属栅电极层239侧壁和阻挡结构231侧壁。

所述鳍式场效应晶体管还包括栅介质层238,所述栅介质层238横跨中心 区域ⅳ的鳍部220,所述金属栅电极层239位于栅介质层238上。

所述栅介质层238和金属栅电极层239构成金属栅极结构237。

所述金属栅极结构237的数量为一个或多个。本实施例中,以金属栅极结构237的数量为3个作为示例。

所述阻挡结构231的电导率在3.0e-4s/m以下。

本实施例中,阻挡结构231包括阻挡横跨边缘区域ⅲ鳍部220的阻挡栅介质层233和位于阻挡栅介质层233上的阻挡栅电极层234。

所述阻挡栅介质层233的材料为氧化硅或者高k介质材料;所述阻挡栅电极层234的材料为多晶硅。

需要说明的是,在其它实施例中,所述阻挡结构可以为单层材料,且阻挡结构的电导率在3.0e-4s/m以下。当所述阻挡结构为单层材料时,所述阻挡结构的材料可以为多晶硅或单晶硅。

本实施例中,阻挡结构231的顶部表面形成有第一掩膜层240。

所述第一掩膜层240的材料为氮化硅、氮氧化硅或者氮碳氧化硅。

所述鳍式场效应晶体管还包括:第二层间介质层291,所述第二层间介质层291位于金属栅极结构237、阻挡结构231和第一层间介质层260上;导电插塞292,位于源漏区250上,所述导电插塞292贯穿第一层间介质层260和第二层间介质层291。

由于鳍式场效应晶体管具有第一掩膜层240,所述第二层间介质层291位于金属栅极结构237、阻挡结构231、第一层间介质层260和第一掩膜层240上。

本发明提供的鳍式场效应晶体管,由于鳍式场效应晶体管具有横跨第一区域鳍部的阻挡结构,阻挡结构能够限制源漏区的形成空间,避免源漏区中靠近阻挡结构的区域相对于靠近金属栅电极层的区域形成塌陷,从而使得阻挡结构和金属栅电极层之间的源漏区对相应沟道的应力增加。

其次,金属栅电极层没有替代阻挡结构的位置。阻挡结构能够采用绝缘性能较好的材料,使得阻挡结构和相邻导电插塞之间的寄生电容较小,从而 降低了鳍式场效应晶体管的寄生电容。

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1