本发明属于半导体光电器件及其制备的技术领域,涉及一种具有良好整流特性的异质结二极管、提高光催化性能的硼掺杂氧化锌片层球/p-型PET-ITO异质结的制备方法。
背景技术:
氧化锌(ZnO)是Ⅱ-Ⅵ族直接带隙半导体光催化材料,室温下禁带宽度较大(3.37eV),光学透过率高,波长位于近紫外区域,激子结合能高达60meV,室温热离化能为26meV,可以实现室温甚至高温下高效的激子受激发射,产生紫外辐射发光,在短波长光电器件(蓝紫光探测器、光电传感器等)领域中具有广阔的应用前景。本征ZnO极性半导体呈现n型导电特性,存在许多本征缺陷,掺入硼(B)等施主杂质后会使ZnO导带中的电子浓度增加,与其它p型半导体组装后形成的异质结呈现出良好的电学性能,在薄膜晶体管(TFT)和半导体/绝缘体/半导体(SIS)异质结中具有很大的潜在应用。ZnO在波长低于387nm的紫外光照射下,可产生光生电子-空穴对,在酸碱性介质中均表现出良好的催化降解性能,被认为是极具应用前景的高活性光催化剂。
现有技术中,大多数ZnO纳米材料通常是在硬质衬底(如玻璃基片和单晶硅片等)上制备获得的。与硬质衬底相比,柔性衬底上制备的ZnO纳米材料不但可以保留ZnO的光电特性,而且具有可弯曲、质量轻、不易破碎、便于运输等独特优点。聚对苯二甲酸乙二醇酯-氧化铟锡(PET-ITO)衬底不但在可见光范围内有很高的透过率,较高阻隔氧气和水汽渗透的能力,还具有较强的衬底稳定性和导电能力,是制作各类显示器柔性阳极的理想衬底材料。制备各类掺杂ZnO纳米材料的方法很多,如磁控溅射法(包括多靶共溅射)、化学气相沉积法、脉冲激光沉积法、分子束外延法等方法,这些方法不仅通常需要昂贵的设备,而且制备过程繁琐复杂。由于水热法具有方法简单、成本低廉、易于大批量生长、易于控制样品形貌和尺寸等优点,因而是一种极有前景的制备掺杂ZnO纳米材料的方法。
目前,大部分关于本发明类似的技术报道主要集中在Al/Ga等元素的掺杂或在硬质衬底上的制备:如文献Journal of Materials Science Materials in Electronics 25(2014)2934,主要研究PET衬底上制备镓(Ga)掺杂的ZnO薄膜;文献Nanoscale research letters 7(2012)789报道了在玻璃硬质衬底上制备Al/Ga掺杂的ZnO薄膜。但均未提及B掺杂ZnO片层球及其电学、光催化特性。
技术实现要素:
本发明的目的在于提供一种硼掺杂氧化锌片层球/p-型PET-ITO异质结及其制备方法和应用,通过水热法在柔性衬底上生长大面积的B掺杂ZnO纳米结构,增强异质结二极管的电学性能,提高对水溶性偶氮染料的光降解效率。
为达到上述目的,本发明采用的技术方案为:
一种硼掺杂氧化锌片层球/p-型PET-ITO异质结,包括在PET-ITO柔性衬底的表面生长的氧化锌籽晶层,以及在氧化锌籽晶层表面生长的纳米结构的硼掺杂的氧化锌片层球;所述的PET-ITO柔性衬底的表面是ITO层的上表面,ITO层的下表面与PET层接触;硼掺杂的氧化锌片层球为n型半导体,PET-ITO柔性衬底为p型半导体,硼掺杂的氧化锌片层球分布在PET-ITO柔性衬底的表面,形成n-p异质结结构。
所述的硼掺杂氧化锌片层球/p-型PET-ITO异质结的制备方法,包括以下步骤:
1)溅射籽晶层:在干净的PET-ITO柔性衬底上,利用离子溅射仪溅射一层氧化锌籽晶层,离子溅射仪的靶材为ZnO;
2)制备前驱体溶液:配制Zn(NO3)2·6H2O和C6H12N4的混合水溶液,再加入H3BO3,混合搅拌后得到前驱体溶液;前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:(0.6~4)。
3)制备硼掺杂氧化锌:将镀有氧化锌籽晶层的PET-ITO柔性衬底放入前驱体溶液中,密封后放入恒温加热干燥箱中,在氧化锌籽晶层表面生长出纳米结构的硼掺杂的氧化锌片层球,然后降至室温,取出PET-ITO柔性衬底,即得到硼掺杂氧化锌片层球/p-型PET-ITO异质结。
所述的PET-ITO柔性衬底在使用前先用无水乙醇和去离子水清洗干净,再在空气中晾干备用。
所述步骤1)中溅射时间为3~5min,溅射电流为6~10mA,压强为8~10Pa。
所述步骤2)的前驱体溶液中Zn(NO3)2·6H2O的浓度为0.05mol/L,C6H12N4的浓度为0.05mol/L,H3BO3的浓度为0.03~0.2mol/L。
所述步骤3)中生长纳米结构的硼掺杂的氧化锌片层球时的温度为80~100℃、生长时间为4~6h。
所述的硼掺杂氧化锌片层球/p-型PET-ITO异质结作为光催化剂在光催化降解水溶性偶氮染料方面的应用。
所述的硼掺杂氧化锌片层球/p-型PET-ITO异质结作为n-p异质结二极管的应用。
相对于现有技术,本发明的有益效果为:
本发明提供的硼掺杂氧化锌片层球/p-型PET-ITO异质结,其中B掺杂ZnO片层球为n型半导体,PET-ITO衬底为p型半导体,两者通过ZnO籽晶层紧密接触;硼掺杂的氧化锌致密地分布在p-型PET-ITO的表面,形成n-p异质结结构,当受到紫外光照射时,产生光生电子-空穴对,将ZnO表面的氢氧根离子(OH-)和H2O氧化成羟基自由基(·OH),将溶于水中的O2转变为氧负离子自由基(O2-),而光生空穴、·OH和O2-都是强氧化剂,能氧化降解染料等有机物;掺入B后,提供了更多的电子载体参与氧化还原反应,并增强了内建电场,减少光生电子-空穴对的复合,从而提高了光催化剂的降解效率,并增强了异质结二极管的电学性能。本发明提供的硼掺杂氧化锌片层球/p-型PET-ITO异质结能够作为光催化剂在光催化降解水溶性偶氮染料方面进行应用,也能作为n-p异质结二极管进行应用。
本发明提供的硼掺杂氧化锌片层球/p-型PET-ITO异质结的制备方法,采用合成原理简单、易于控制样品形貌的水热法,以六水硝酸锌、乌洛托品和硼酸为主要反应物,在p-型柔性衬底PET-ITO的表面生长纳米结构的B掺杂ZnO片层球,并且在衬底与B掺杂ZnO片层球中间先溅射一层ZnO籽晶层,ZnO籽晶层一方面作为缓冲层,能够减缓衬底与B掺杂ZnO片层球的晶格失配与热失配等问题,另一方面作为晶种,进行诱导成核。该方法操作简单、能够在p型半导体的PET-ITO衬底表面生成n型半导体的B掺杂ZnO片层球,并且两者紧密接触,从而获得性能优良的B掺杂ZnO片层球/p-型PET-ITO异质结。本发明通过水热反应获得的B掺杂ZnO片层球/p-型PET-ITO异质结具有特殊的片层球形貌,典型的整流特性,对有色偶氮染料有较强的降解作用,在异质结二极管、环境治理等领域具有广阔的研究前景,适合大面积生产和应用。该方法不仅合成方法简单,不需要昂贵的实验设备,极大的降低了成本,还能进行大面积的制备,因此在产业化生产方面具有广阔的应用前景。
附图说明
图1是90℃下水热生长5小时后无掺杂(a)及硼掺杂(b)的氧化锌纳米结构的XRD图谱,插图是纯衬底PET-ITO的XRD衍射图谱。
图2是90℃下水热生长5小时后纯ZnO纳米结构的扫描电子显微镜(SEM)照片。
图3是90℃下水热生长5小时后B掺杂ZnO纳米结构的扫描电子显微镜(SEM)照片。
图4是n-型B-ZnO/p-型PET-ITO异质结I-V测试电路图。PET-ITO为阳极,最上面一层导电ITO为阴极。
图5是B掺杂ZnO片层球/PET-ITO异质结的I-V特性曲线。由图5可知,B掺杂ZnO片层球/PET-ITO异质结具有典型的整流特性,使得其光催化性能提高。
图6是氧化锌纳米结构/PET-ITO光催化降解曲线。测试点为●的曲线为没有催化剂状态,测试点为▲的曲线为纯ZnO纳米结构降解状态,测试点为◆的曲线为B掺杂ZnO片层球降解状态。由图6可知,照射120分钟后,无催化剂状态下的降解率可忽略不计,纯ZnO纳米结构光催化降解率为20.4%,但B掺杂ZnO片层球降解率达到41.45%,说明在ZnO纳米结构中掺入B后,其光催化性能得到提高。
图7是热平衡状态下的硼掺杂氧化锌/PET-ITO异质结的安迪生-肖克莱能带图。e-:电子;h+:空穴;χ:电子亲和势;hυ:光子能量;EC1、EC2:氧化锌和衬底的导带;EV1、EV2:氧化锌和衬底的价带;EF:费米能级;·OH:羟基自由基。
具体实施方式
本发明提供的硼掺杂ZnO片层球/p-型PET-IEO异质结的制备方法包括以下步骤:
第一步柔性衬底的准备:利用无水乙醇和去离子水进行清洗,空气中晾干。
第二步镀籽晶层:利用离子溅射仪(靶材为ZnO)在柔性衬底PET-ITO表面溅射一层很薄的ZnO籽晶层,工艺参数为:溅射时间:3~5min,压强:8~10Pa,溅射电流6~10mA。
第三步前驱体溶液的配制:配制六水硝酸锌(Zn(NO3)2·6H20)和乌洛托品(C6H12N4)的混合溶液,再加入H3BO3溶液,然后利用磁力搅拌器搅拌20分钟,制得前驱体溶液。前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:(0.6~4),Zn(NO3)2·6H2O的浓度为0.05mol/L,C6H12N4的浓度为0.05mol/L,H3BO3的浓度为0.03~0.2mol/L。
第四步制备ZnO片层球:将镀有ZnO籽晶层的PET-ITO衬底用夹子夹住,使其在前驱体溶液中保持垂直状态。利用保鲜膜将反应容器密封,放入恒温加热干燥箱内,升温至80~100℃,保温4~6小时。反应溶液自然冷却至室温后,取出PET-ITO衬底,用去离子水缓缓冲洗表面,空气中晾干后,在PET-ITO表面获得硼掺杂的氧化锌纳米结构。
第五步光催化实验:室温条件下,以有色偶氮染料活性黄15溶液为作用对象,实验在20cm长的石英管中进行,用细铜丝悬吊ZnO/PET-ITO试样处于液面以下2/3处,使之与汞灯平行来增大样品的光照面积,选用功率为500W的高压汞灯(主波长为365nm)作为紫外光源,距离样品1m。整个反应过程中采用磁力搅拌的方式来增强传质,定时取样(20min),在414.5nm波长处,采用直接比色法分析活性黄15的浓度随反应时间的变化,从而研究氧化锌光催化性能。
本发明提供的硼掺杂氧化锌片层球/p-型PET-ITO异质结的一种应用途径为:光催化降解活性黄15。光催化降解活性黄15的具体过程为:500W高压汞灯作为紫外光源,硼掺杂氧化锌片层球/p-型PET-ITO异质结为光催化剂,采用定时取样测定、磁力搅拌的方式进行光催化反应。
本发明提供的硼掺杂氧化锌片层球/p-型PET-ITO异质结的另一种应用途径为:n-p异质结二极管。n-型B-ZnO/p-型PET-ITO异质结二极管的具体测试过程为:以p-型衬底PET-ITO为阳极,以压在氧化锌纳米结构上面的n-型透明导电氧化铟锡玻璃(ITO)作为阴极,形成完整的闭合回路进行电流电压特性测试。
本发明提供的ZnO片层球/PET-ITO异质结可以作为一种稳定的光催化剂,通过B掺杂进一步提高光催化活性,为研究ZnO半导体在光催化领域的作用奠定了基础。本发明提供的B掺杂ZnO片层球/PET-ITO异质结的制备方法,不仅合成方法简单,不需要昂贵的实验设备,极大的降低了成本,还能进行大面积的制备,因此在产业化生产方面具有广阔的应用前景。
下面结合附图和本发明较优的实施例对本发明做进一步详细说明。
对比例1:
1)用离子溅射镀膜仪在PET-ITO衬底表面上镀ZnO籽晶层,压强10Pa,电流6mA时维持1min,电流8mA时维持4min;
2)配制前驱体溶液,前驱体溶液中Zn(NO3)2·6H2O和C6H12N4的摩尔浓度均为0.05mol/L,不含H3BO3,磁力搅拌器搅拌20min;
3)用样品夹夹住表面附有籽晶层的衬底垂直放入前驱体溶液中,用保鲜膜密封后放入干燥箱中,然后升温到90℃,恒温保持5h。然后自然冷却至室温,取出样品并用去离子水冲洗表面,室温下晾干。
对比例得到的反应产物的XRD图谱如图1中的(a)所示,SEM形貌图如图2所示,纯的ZnO纳米结构呈现六方棒状。
实施例1:
1)用离子溅射镀膜仪在PET-ITO衬底表面上镀ZnO籽晶层,压强10Pa,电流6mA时维持1min,电流8mA时维持4min;
2)配制前驱体溶液,前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:0.6,Zn(NO3)2·6H2O和C6H12N4的摩尔浓度均为0.05mol/L,H3BO3的摩尔浓度为0.03mol/L,磁力搅拌器搅拌20min;
3)用样品夹夹住表面附有籽晶层的衬底垂直放入前驱体溶液中,用保鲜膜密封后放入干燥箱中,然后升温到90℃,恒温保持5h。然后自然冷却至室温,取出样品并用去离子水冲洗表面,室温下晾干。
实施例2:
1)用离子溅射镀膜仪在PET-ITO衬底表面上镀ZnO籽晶层,压强8Pa,电流7mA时维持1min,电流9mA时维持3min;
2)配制前驱体溶液,前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:1,Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔浓度均为0.05mol/L,磁力搅拌器搅拌20min;
3)用样品夹夹住表面附有籽晶层的衬底垂直放入前驱体溶液中,用保鲜膜密封后放入干燥箱中,然后升温到100℃,恒温保持4h。然后自然冷却至室温,取出样品并用去离子水冲洗表面,室温下晾干。
实施例3:
1)用离子溅射镀膜仪在PET-ITO衬底表面上镀ZnO籽晶层,压强9Pa,电流6mA时维持1min,电流10mA时维持2min;
2)配制前驱体溶液,前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:1.4,Zn(NO3)2·6H2O和C6H12N4的摩尔浓度均为0.05mol/L,H3BO3的摩尔浓度为0.07mol/L,磁力搅拌器搅拌20min;
3)用样品夹夹住表面附有籽晶层的衬底垂直放入前驱体溶液中,用保鲜膜密封后放入干燥箱中,然后升温到80℃,恒温保持6h。然后自然冷却至室温,取出样品并用去离子水冲洗表面,室温下晾干。
实施例4:
1)用离子溅射镀膜仪在PET-ITO衬底表面上镀ZnO籽晶层,压强8.5Pa,电流6mA时维持1min,电流9mA时维持3min;
2)配制前驱体溶液,前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:2,Zn(NO3)2·6H2O和C6H12N4的摩尔浓度均为0.05mol/L,H3BO3的摩尔浓度为0.1mol/L,磁力搅拌器搅拌20min;
3)用样品夹夹住表面附有籽晶层的衬底垂直放入前驱体溶液中,用保鲜膜密封后放入干燥箱中,然后升温到85℃,恒温保持5.5h。然后自然冷却至室温,取出样品并用去离子水冲洗表面,室温下晾干。
实施例5:
1)用离子溅射镀膜仪在PET-ITO衬底表面上镀ZnO籽晶层,压强10Pa,电流6mA时维持1min,电流8mA时维持4min;
2)配制前驱体溶液,前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:3,Zn(NO3)2·6H2O和C6H12N4的摩尔浓度均为0.05mol/L,H3BO3的摩尔浓度为0.15mol/L,磁力搅拌器搅拌20min;
3)用样品夹夹住表面附有籽晶层的衬底垂直放入前驱体溶液中,用保鲜膜密封后放入干燥箱中,然后升温到90℃,恒温保持5h。然后自然冷却至室温,取出样品并用去离子水冲洗表面,室温下晾干。
实施例5制得的反应产物的XRD图谱如图1中的(b)所示,SEM形貌图如图3所示,B掺杂的ZnO纳米结构呈现片层球结构,并致密的分布在PET-ITO衬底上。
制作n-型B掺杂ZnO/p-型PET-ITO异质结进行I-V测试:以衬底PET-ITO和压在氧化锌纳米结构上面的透明导电氧化铟锡玻璃(ITO)作为异质结二极管的两个电极,前者为阳极,后者为阴极;用导电银浆将铜导线分别连接在导电阴极和导电阳极上,形成完整的闭合回路。I-V测试连接图如图4所示,图5为I-V特性曲线。由图可知,I-V曲线不对称,表现出良好的整流特性,二极管的正向开启电压为0.4V。由于两种不同导电类型的材料紧密接触后,形成异质结,在交界面处产生势垒区(空间电荷区),形成由n-型半导体指向p-型半导体方向的内建电场,使得光生电子与空穴有效分离,从而提高了氧化锌纳米结构的光催化性能。
研究掺杂15%B的ZnO片层球的光催化性能:将未掺杂(对比试验)及B掺杂氧化锌纳米结构分别放入20cm长的石英管中,加入4mL的反应浓度为10mg/L的活性黄15溶液,500W高压汞灯照射120分钟,每隔20min取样2mL,在414.5nm波长处,采用直接比色法分析活性黄15的浓度随反应时间的变化。光催化测试结果如图6所示。降解率的计算公式为:
式(1)中,ξ为降解率,C0和C分别为RY15溶液的初始浓度和光催化降解后的浓度。由图可知,B掺杂氧化锌明显具有更大的降解率,说明B掺杂可以提高ZnO的光催化性能。具体的光催化作用机制可以用安迪生-肖克莱能带理论来分析,具体过程见图7。
实施例6:
1)用离子溅射镀膜仪在PET-ITO衬底表面上镀ZnO籽晶层,压强10Pa,电流6mA时维持1min,电流8mA时维持2min;
2)配制前驱体溶液,前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:3,Zn(NO3)2·6H2O和C6H12N4的摩尔浓度均为0.05mol/L,H3BO3的摩尔浓度为0.15mol/L,磁力搅拌器搅拌20min;
3)用样品夹夹住表面附有籽晶层的衬底垂直放入前驱体溶液中,用保鲜膜密封后放入干燥箱中,然后升温到90℃,恒温保持5h。然后自然冷却至室温,取出样品并用去离子水冲洗表面,室温下晾干。
实施例7:
1)用离子溅射镀膜仪在PET-ITO衬底表面上镀ZnO籽晶层,压强9.5Pa,电流6mA时维持1min,电流8mA时维持4min;
2)配制前驱体溶液,前驱体溶液中Zn(NO3)2·6H2O、C6H12N4和H3BO3的摩尔比为1:1:4,Zn(NO3)2·6H2O和C6H12N4的摩尔浓度均为0.05mol/L,H3BO3的摩尔浓度为0.2mol/L,磁力搅拌器搅拌20min;
3)用样品夹夹住表面附有籽晶层的衬底垂直放入前驱体溶液中,用保鲜膜密封后放入干燥箱中,然后升温到95℃,恒温保持4.5h。然后自然冷却至室温,取出样品并用去离子水冲洗表面,室温下晾干。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围内。