本发明属于半导体制造技术领域,具体涉及一种光调制的二极管和功率电路。
背景技术:
功率二极管的结构简单,在整流电路、逆变器等功率电路中有广泛应用。为了提高功率二极管的反向耐压特性,即提高其反向击穿电压,往往需要掺杂浓度较低的半导体层形成pn结或者肖特基结,这也造成其导通时的正向压降大,即正向特性变差。
氮化镓(GaN)宽禁带直接带隙材料具有高硬度、高热导率、高电子迁移率、稳定的化学性质、较小的介电常数和耐高温等优点,所以GaN在发光二极管、高频、高温、抗辐射、高压等电力电子器件中有着广泛的应用和巨大的前景。
迄今为止,基于GaN材料的异质结高电子迁移率晶体管(HEMT)已经有了广泛的应用和研究,而基于GaN材料的功率二极管的应用还很少,其器件性能和结构还有值得进一步改善之处。
技术实现要素:
本发明旨在至少在一定程度上解决上述技术问题之一或至少提供一种有用的商业选择。为此,本发明的一个目的在于提出一种具有结构简单、导通压降小的光调制的二极管。
根据本发明实施例的光调制的二极管,包括:第一半导体层;形成在所述第一半导体层之上的第一金属层;形成在所述第一半导体层之上的发光结构,其中,所述发光结构用于产生用于激发所述第一半导体层中电子-空穴对的光线。
在本发明的一个实施例中,进一步包括:形成在所述第一半导体层之下的第二半导体层,所述第一半导体层与所述第二半导体层具有相反的导电类型。
在本发明的一个实施例中,进一步包括:形成在所述第一半导体层与所述第二半导体层之间的第三半导体层,所述第三半导体层为本征半导体。
在本发明的一个实施例中,进一步包括:形成在所述第一半导体层之中且在所述发光结构之下的重掺杂区。
在本发明的一个实施例中,所述第一半导体层的上表面开有凹槽,所述发光结构形成在所述凹槽中,所述发光结构的侧壁与所述凹槽之间设置有绝缘介质层。
在本发明的一个实施例中,所述第一半导体层包括具有直接带隙结构的半导体材料。
在本发明的一个实施例中,所述半导体材料包括氮化物半导体材料、砷化物半导体材料、氧化物半导体材料或锑化物半导体材料。
在本发明的一个实施例中,所述发光结构为发光二极管结构。
在本发明的一个实施例中,所述发光二极管结构包括发光层,所述发光层为量子阱或多量子阱结构。
在本发明的一个实施例中,所述发光层材料与所述第一半导体层的材料属于同一系列。
在本发明的一个实施例中,所述发光层的禁带宽度不小于所述第一半导体层的禁带宽度。
在本发明的一个实施例中,进一步包括:同步结构,用于控制所述光调制的二极管和所述发光结构同步开启。
由上可知,根据本发明实施例的光调制的二极管至少具有如下优点:
相对于传统的独立二极管而言,本发明提出的光调制的二极管,将发光结构第一半导体层之上,在不影响器件关态电流的前提下,利用光照极大地降低器件的导通压降,改善导通性能。
本发明的另一个目的在于提出一种功率电路。
根据本发明实施例的功率电路,包括上述实施例所述的光调制的二极管。
由上可知,根据本发明实施例的功率电路至少具有如下优点:
相对于传统的功率电路,本发明提出的功率电路,将发光结构设置在第一半导体层之上,在不影响器件关态电流的前提下,利用光照极大地降低器件的导通压降,改善导通性能。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一个实施例的光调制的二极管的结构示意图;
图2是本发明另一个实施例的光调制的二极管的结构示意图;
图3是本发明另一个实施例的光调制的二极管的结构示意图;
图4是本发明另一个实施例的光调制的二极管的结构示意图;
图5是本发明另一个实施例的光调制的二极管的结构示意图;
图6是本发明另一个实施例的光调制的二极管的结构示意图;
图7是本发明另一个实施例的具有同步结构的光调制的二极管的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本发明一方面提出一种光调制的二极管,如图1所示,包括:第一半导体层100,第一半导体层100为第一导电类型;形成在第一半导体层100之上的第一金属层200;形成第一半导体层100之上的发光结构300,其中,发光结构300用于产生用于激发第一半导体层100中电子和空穴对的光线。
图1中所示的晶体管是一种肖特基二极管。本发明实施例的光调制的二极管,第一半导体层100可以是Si上外延的化合物半导体材料,如GaN等,还可以是自支撑的化合物半导体材料,如GaN自支撑晶片衬底。需要特别指出的是,图1中的第一半导体层100仅是一种示意结构,可包含单层材料层,也可以包含多层材料层。发光结构300的下电极可以直接从第一半导体层100引出。当器件导通时,发光结构300产生光子,光子在第一半导体层100中激发电子和空穴对,由于肖特基结空间电荷区的吸引,其中的电子和空穴流向结区,减小了耗尽层(空间电荷区)宽度,从而降低了导通压降,增强了导通性能。当器件关断时,发光结构300和光调制的二极管可以与同步关断,发光结构300不会对关态泄漏电流产生影响。
图2中所示的晶体管是一种由pn结形成的二极管。在本发明的一个实施例中,在第一半导体层100之下形成有第二半导体层400,第一半导体层100为p型掺杂,第二半导体层400的导电类型与第一半导体层100相反,即为n型掺杂。需要说明的是,也可以第一半导体层100为n型掺杂,而第二半导体层400为p型掺杂。第一金属层200是第一半导体层100的欧姆接触层,用于引出电极。其中,第一半导体层100可以是轻掺杂,也可以是重掺杂;第二半导体层400可以轻掺杂,也可以是重掺杂,此时并不限定第一半导体层100和第二半导体层400的掺杂类型。当器件导通时,发光结构300产生光子,光子在第一半导体层100中激发电子和空穴对,由于pn结空间电荷区的吸引,其中的电子和空穴流向结区,减小了耗尽层宽度,从而降低了导通压降,增强了导通性能。当器件关断时,发光结构300和光调制的二极管可以与同步关断,发光结构300不会对关态泄漏电流产生影响。
图3中所示的晶体管是一种由pin结形成的二极管。在本发明的一个实施例中,在第一半导体层100和第二半导体层400之间还形成第三半导体层500,第三半导体层500为本征半导体层,与第一半导体层100和第二半导体层400组成pin结半导体。图3中,第一半导体层100为p型掺杂,第二半导体层400为n型掺杂。需要说明的是,也可以第一半导体层100为n型掺杂,而第二半导体层400为p型掺杂。当器件导通时,发光结构300产生光子,光子在第一半导体层100中激发电子和空穴对,由于pin结空间电荷区的吸引,其中的电子和空穴流向结区,减小了耗尽层宽度,从而降低了导通压降,增强了导通性能。当器件关断时,发光结构300和光调制的二极管可以与同步关断,发光结构300不会对关态泄漏电流产生影响。
为了简便表述,在下面的示例中,均以肖特基二极管为例,而这些结构均可以用在由pn结形成的二极管和pin结形成的二极管中。
在本发明的一个实施例中,在第一半导体层之中且在发光结构的下方形成有重掺杂区600。如图4所示,该重掺杂区600可以作为发光结构300的电极引出区,即发光结构的下电极从重掺杂区600引出。当第一半导体层不是重掺杂层时,从重掺杂区600引出发光结构300的下电极有利于降低发光结构的电阻,增加发光效率。
在本发明的又一个实施例中,在第一半导体层100之上形成有开槽,且发光结构300形成在开槽之中,发光结构300与第一半导体层之间100填充有绝缘介质层700。如图5所示,通过在开槽中形成发光结构300,发光结构300离二极管的空间电荷区(耗尽区)更近,可以有效地在耗尽区附件激发电子空穴对,改善导通性能。
如图6所示,在本发明的一个实施例中,发光结构300与光调制的二极管共享相同的电极,当器件导通时,发光结构300和光调制的二极管同步开启和关断,可以在增强光调制的二极管的导通性能的前提下,简化器件和电路结构,减少工艺的复杂性,降低成本。
在本发明的一个实施例中,第一半导体层100包括具有直接带隙结构的半导体材料。直接带隙材料在光子的激发下可快速响应产生电子-空穴对,且其具有非常高内部量子效率,有利于增强光调制的作用,提升器件性能。同样,在pn结和pin结形成的二极管中,第二半导体层400和第三半导体层500也包括具有直接带隙结构的半导体材料。
在本发明的一个实施例中,第一半导体层100材料包括氮化物半导体材料、砷化物半导体材料、氧化物半导体材料或锑化物半导体材料。其中,氮化物半导体材料包括GaN、AlGaN、InGaN、AlN、InN。砷化物半导体材料包括GaAs、AlGaAs、InGaAs、InAs。氧化物半导体材料包括Ga2O3、ZnO、InGaZnO。锑化物半导体材料包括GaSb、AlGaSb、InGaSb、InSb。这些材料都具有直接带隙的能带结构,可在光子的激发下快速响应产生电子-空穴对。需要说明的是,在pn结和pin结形成的二极管中,第二半导体层400和第三半导体层500也可以是这些半导体材料,第一半导体层100、第二半导体层400和第三半导体层500可以是相同的材料,也可以是不同的材料。
在本发明的一个实施例中,发光结构300为发光二极管结构。其中,发光二极管结构可以如图1所示设置在第一半导体层100之上。发光二极管结构还可以包括量子阱或多量子阱结构作为发光层的结构。
在本发明的一个实施例中,发光层材料与第一半导体层100的材料属于同一系列,即发光层材料为与第一半导体层100材料对应的氮化物、砷化物、氧化物或者磷化物。采用同一系列材料制成的发光层和第一半导体层100能简化发光结构的制作工艺,同时,调节发光层和第一半导体层100的禁带宽度,使得发光结构300发出的光子可被第一半导体层100有效吸收,从而有效改善光调制的二极管的导通性能。需要说明的是,在pn结和pin结形成的二极管中,发光层材料也可以与第二半导体层400或第三半导体层500的材料属于同一系列。
在本发明的一个实施例中,发光层的禁带宽度不小于第一半导体层100的禁带宽度。发光层的禁带宽度不小于第一半导体层100的禁带宽度时,则产生的光子具有足够的能量在第一半导体层100中激发电子空穴对,此时其内部量子效率高,在第一半导体层100中产生的有效载流子多,二极管结区耗尽层宽度减小,导通压降降低。当然,即便发光层的禁带宽度小于半导体层的禁带宽度,产生的光子也可以激发第一半导体层100中的电子-空穴对,但其内部量子效率会比较低;反之,如果发光层的禁带宽度远大于第一半导体层100的禁带宽度,虽然光子有足够的能量激发第一半导体层100中的电子空穴对,然而其富余的能量会转换为热量,造成器件发热和能量浪费。因此,发光层的禁带宽度与第一半导体层100的禁带宽度一致为最优。需要说明的是,在pn结和pin结形成的二极管中,发光层的禁带宽度也可以不小于第二半导体层400或第三半导体层500的禁带宽度。
在本发明的一个实施例中,还包括用于控制光调制的二极管和发光结构300同步开启的同步结构。如图5所示,在本实施例中,在发光结构300和光调制的二极管之间串联一个电阻,通过调制n级电压,以确保发光结构300和光调制的二极管能够同步开启和关断。需要指出的是,同步结构不限于在发光结构300和光调制的二极管之间串联一个电阻,只要能使发光结构300和光调制的二极管同步开启的电路或器件结构均可;同样,电阻也不限于串联在电源和发光结构之间,也可以串联在电源和光调制的二极管的栅极之间,串联这个电阻是为了调制光调制的二极管和发光结构之间的电压,使得发光结构和光调制的二极管均在合适的电压下工作即可。
相对于传统的独立二极管而言,本发明提出的光调制的二极管,将发光结构第一半导体层之上,在不影响器件关态电流的前提下,利用光照极大地改善降低器件的导通压降,增强导通性能。
本发明的实施例还公开了一种功率电路,包括上述实施例的光调制的二极管,通过光调制的二极管开态性能的提升,可有效改善功率电路的性能。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。