蓝宝石上氮化镓单片集成功率变换器的制作方法

文档序号:13518480阅读:176来源:国知局
蓝宝石上氮化镓单片集成功率变换器的制作方法

相关申请的交叉引用

本申请涉及并要求2015年10月9日提交的美国临时专利申请no.62/239,616的权益,以及涉及2013年10月29日提交的美国专利申请序列号no.14/065715,这些申请案的全部内容以引用方式并入本文。

关于联邦资助的声明

本申请涉及功率变换器。



背景技术:

现有技术中存在分立式600v的硅基氮化镓(gan)功率开关。例如,美国国际整流器公司和美国transphorm公司的级联结构(cascode)gan开关,其将低压硅mos场效应管(simosfet)和常开型gan开关非均匀地组合封装。但是,所采用的级联结构并不适用于ganic半桥电路。

600vganhemts(高电子迁移率晶体管)的低开关损耗能够增加开关频率,以减小功率变换器的尺寸和重量。然而,由于电感中的铁氧体在约1mhz以上会有损耗,所以现有技术中的gan功率变换器会因电感损耗而被限制在大约1mhz的开关频率。

科罗拉多大学(uc)已经报道了在200mhz的开关频率下的gan变换器。这些gan变换器使用空心电感,其在200mhz高频率下体积小且效率高;然而,开关电压仅限于大约25v。ucgan变换器建立在绝缘基底上,所以变换器具有低的寄生输出电容,这对于高频率下有效的零电压开关(zvs)变换器是必需的。但是,这些变换器所使用的绝缘基底是sic,而6英寸sic基底非常昂贵。

硅(si)一直是gan功率电子器件的优选基底。然而,硅基gan存在动态导通电阻、漏电源、寄生输出电容和可靠性等问题,并且如上所讨论的,由于铁氧体磁芯电感损耗,大功率变换器的开关频率被限制在1mhz左右。大多数功率电子器件的工作频率在10到100khz之间,大多数功率变换器的电感为10nh级。

需要一种能够在高开关频率和高压下工作的改进的功率变换器。本申请实施例提供了这些和其他需求。



技术实现要素:

在本申请的第一实施方式中,板桥电路包括蓝宝石基底、位于蓝宝石基底上的gan上开关、位于蓝宝石基底上并耦接gan上开关的gan下开关、耦接到上开关的第一导体、耦接到下开关的第二导体、以及电容器,其中第一导体的一部分和第二导体的一部分位于一平面上,该平面与上开关和下开关相垂直并相隔一高度,并且其中电容器耦接在第一导体的该部分和第二导体的该部分之间。

在本申请的另一实施方式中,一种用于制作半桥电路的方法包括:在蓝宝石晶圆上生长gan外延;在gan外延中制作上开关和下开关;在gan外延中形成第一栅极驱动器;在gan外延中形成第二栅极驱动器;形成第一金属柱;形成第二金属柱;形成耦接到上开关的第一导体,其中第一导体的一部分受第一金属柱和第二金属柱支撑于一平面,该平面与上开关和下开关垂直并相隔一高度;形成耦接到下开关的第二导体,其中第二导体的一部分受第一金属柱和第二金属柱支撑于一平面,该平面与上开关和下开关垂直且相隔一高度;提供耦接在第一导体的该部分和第二导体的该部分之间的电容器;在第一栅极驱动器、上开关、第二栅极驱动器、下开关、第一金属柱、第二金属柱、第一导体和第二导体之间形成互连,以形成一或多个半桥集成电路。

根据下面的详细描述和附图,这些和其他特征和优点将会更加明显。图示和描述中的附图标记表示各种特征;在附图和本说明书中,相同或相似的数字表示相同或相似的特征。

附图说明

图1a示出了半桥功率回路电路的截面;图1b示出了根据本申请图1a的半桥电路的电路图;

图1c示出了根据本申请的垂直功率回路的截面图,其中展示了开关电流和返回电流路径相隔高度h;

图1d示出了根据本申请的栅极驱动器电路的电路图;

图1e示出了根据本申请的半桥功率回路电路的另一截面;

图1f示出了根据本申请的包含栅极驱动器的已制好的半桥电路的相片;

图2a示出了根据现有技术的示有通向热沉的热路径的硅基gan的截面;

图2b示出了根据本申请的示有通向热沉的热路径的蓝宝石上gan的截面;

图2c示出了根据现有技术的硅基gan制造的功率开关的各层温升,并对比地给出了根据本申请的蓝宝石上gan制造的功率开关的温升;

图3示出了sisjmosfet、硅基gan和蓝宝石上gan在外延(epi)、基底和工艺方面估计的成本比较,并示出了根据本申请的蓝宝石上gan的成本最低;

图4示出了根据本申请的垂直功率回路电感与回路高度h的关系图。

具体实施方式

以下的说明阐述了许多细节,清楚地描述在此公开的各种具体实施方式。但是,本领域的技术人员将理解,可以在没有下面讨论的所有具体细节的情况下实施本发明。为免得本发明变得模糊不清,一些实施例中没有描述熟知的技术特征。

本申请描述了如图1a所示的功率变换器10。功率变换器10可以是直流(dc)到dc或交流(ac)到dc的功率变换器。如图1b所示,功率变换器10具有gan上开关14和gan下开关16,以形成gan半桥电路。半桥电路在本领域是众所周知的。上开关14和下开关16在gan外延48中实现,该外延根据本领域公知的方法形成于蓝宝石基底12上。“上”和“下”的描述不是指物理布置,而是指相对于地的开关电位。如图1b所示,电位v+40和v-42分别连接到上开关14和下开关16。如图1b所示,ac电压44连接于开关14和16之间。上开关14和下开关16可以是常关型n沟道gan场效应晶体管开关。

通过消除键合线以及减小功率变换器的关键部件间的空间,蓝宝石基底12上gan半桥电路10的单片集成可以减小寄生电感。

此外,如图1a所示,通过在功率开关14和16的顶部上方包含垂直功率回路20,其包括至少一部分母线电容18,可以大大降低功率开关的电感。图1c中进一步示出了以相反方向行进的开关电流26和返回电流28相隔高度h30。近距离及相反方向的开关电流和返回电流,能够减小电感。开关电流26和返回电流28之间的容积或空腔50可以填充气体,例如空气,或者填充聚酰亚胺或苯并环丁烯(bcb)。

垂直功率回路20中的相反电流之间的高度h30,其范围可以在1μm到100μm内。该小高度h30导致大大减少垂直功率回路10的电感,其范围可以为小于50ph到200ph。在一实施例中,高度h30可以是5μm。具有5μm高度h30的200w400v的半桥的估计功率回路电感小于50ph,如图4中的点32所示。这种低于50ph的超低电感使得开关频率的范围为1mhz至100mhz。开关电压的范围可以为10伏到1000伏。低电感也限制了电压过冲到约20伏。在开关期间限制电压过冲很重要,因为大的过冲会损坏功率开关。

图4示出了垂直回路电感相对于垂直回路高度h30的曲线图。蓝宝石上的gan半桥被示出为具有小25倍的环电感和环高度h30,并且环高度比在现有技术的aln多芯片模块(mcm)小50倍。

下面的等式表示每垂直回路长度的垂直回路电感:

其中,lloop是垂直功率回路电感;

len是垂直功率回路的长度;

wloop是垂直功率回路的宽度;

h是垂直功率回路的高度。

如图1a和图1e所示,功率回路母线电容器18可以集成在上开关14和下开关16之上。功率回路母线电容器18可以是分立电容器,如图1a所示,或者是单片集成的金属-绝缘体-金属电容器,如图1e所示。凸形触点92可以耦接到上开关14,并且凸形触点94可以耦接到下开关16,以支撑垂直功率回路的上部分,并分别通过导体93和96向电容器18提供触点,导体足够坚固以将电容器18支撑在蓝宝石基底12上方,并保持高度h30。导体93和96可位于支撑在凸形触点92和94上的功率回路基底上。导体93和96垂直于上开关14和下开关,并与之相隔高度h30。

还可以使用其他方法来支撑垂直功率回路的上部分。例如,凸形触点92和94可以是金属柱,或者是具有通孔的非金属柱,或者是柱上具有导体的柱,以提供功率回路的电互连。如图1a和图1e所示,凸形触点92和94位于垂直功率回路20的相对端。凸形触点92位于导体93的一端,而凸形触点94位于导体96的一端。

如图1e所示,通过在导体93的一部位和导体96的一部位之间放置电介质19,电容器18可以与导体93和96单片集成。而且,印刷电路板100可以连接到凸形触点92和94,该印刷电路板可以具有额外的部件如部件108。通过触点或者导体102、通孔104及导体104,可以提供到印刷电路板顶部和到部件108的电接触。

如图1b所示,用于上开关14和下开关16的栅极驱动器22和24页可以分别地与蓝宝石基底12上的功率开关14和16集成在一起。图1d示出了用于上开关14的示例性栅极驱动器22。栅极驱动器可以具有一个n沟道晶体管60和另一个n沟道晶体管62,晶体管60可以是gan场效应晶体管(fet)并连接到vg和上开关14的栅极,晶体管62可以是fet并连接于上开关14的源极和上开关14的栅极之间。栅极回路电流36通过晶体管62,并且是从上开关14的栅极到源极。在另一个实施例中,n沟道晶体管60可以替换为p沟道晶体管60。用于下开关16的栅极驱动器24可以类似于栅极驱动器22。栅极驱动器开关60和62的额定电压可以比上开关14和下开关16的额定电压低5倍。

为了减小栅极回路电感,需要减小如图1d所示的栅极电流环36的高度。如图1b和1c所示的栅极电流环36的高度35可以小于或等于0.5μm,这可以明显地降低栅极电感,从而减少上升和下降时间。用于将上开关14或下开关16从一种状态切换到另一种状态的上升和下降时间可以小于0.2ns。小于或等于0.5μm的高度35仍然能够支持高达20伏的栅极驱动。

与具有分立的gan开关和栅极驱动器的现有变换器相比,本申请的功率变换器的开关损耗更少,动态导通电阻更小,热阻也更小,并且开关频率快了10至100倍。这些优点能使尺寸和重量减少10倍,且成本降低2倍。

蓝宝石上gan大大地减少或消除了从上开关14和下开关16到蓝宝石基底12的寄生输出电容。每栅极宽度的输出电容可以仅为0.1pf/mm,这比硅基gan的寄生输出电容要小大约6倍。低的寄生输出电容还可以减少所需的开关能量和开关电荷,从而降低硬开关和软开关功率变换器的开关损耗。输出电压的明显降低对于将软开关有效增加到高于30mhz开关频率至关重要。

对于零电压开关(zvs),由于变换器在开关周期(switchingperiod)不处理功率,因此,与开关周期相比,寄生电容充放电的时间必须要小。充电时间是输出电荷qoss除以开关电流。短的充电时间需要小的qoss和寄生输出电容cossp。估计所描述的蓝宝石基底12上的gan集成电路(ic)半桥电路要比硅基gan减少6倍的cossp。较低的cossp能够使zvs开关在比硅基gan半桥电路高10至100倍频率时达到大于90%的效率。硅基gan的寄生电容通过硅基底电阻而被充放电,使得zvs变换器的效率降低。而蓝宝石基底12上gan集成电路(ic)半桥电路则消除了这种寄生电容及其相关损耗。

现有技术中的单片集成硅基gan半桥电路具有高动态导通电阻的缺点,这是由于ac节点上的高电压会影响基底偏置。绝缘的蓝宝石基底12减轻了下开关16的动态导通电阻的劣化。

上开关14和下开关16可以是常关型n沟道gan场效应晶体管开关,并且可以在gan外延48中形成横向ganhemt结构。ganhemt结构和单片集成一起能够使600vgan功率开关具有低动态导通电阻,并使上开关14和下开关16需要小于20v的gan栅极驱动。

图1f示出了已制造好的具有集成pmos和mos栅极驱动器的半桥电路的功率开关的相片。

如图2a所示,硅基gan开关80通常芯片贴装82到绝缘氧化铝(al2o3)基底84,随后芯片贴装85到热沉86。在本申请中,如图2b所示,蓝宝石上gan开关位于蓝宝石基底12上,基底直接芯片贴装88到热沉90。单晶蓝宝石的导热率是氧化铝的两倍。蓝宝石上gan消除了硅基底的电阻,以及穿过硅基gan开关的氧化铝到热沉的热阻。如图2c所示,热阻估计减少了2.7倍,这使得蓝宝石上的ganic半桥,相比具有相同热沉的硅基ganic半桥,能够在相同结温下效率降低2.7倍。或者,蓝宝石上ganic半桥可以工作于更高频率,在该更高频率时的损耗高2.7倍。以更高频率工作能使变换器可以制造的更小、更轻并且更便宜。

据估计,蓝宝石上gan功率开关的成本大约是硅基gan开关的61%,如图3所示。功率开关的成本包括基底成本、外延生长成本和工艺成本,基底成本相当于6英寸的硅和蓝宝石,蓝宝石基底的外延生长成本小于硅基底的外延生长成本的一半,二者的工艺成本估计是相同的。

现有技术的gan功率开关使用硅基gan,因为6英寸的低成本基底便宜。然而,现在6英寸蓝宝石基底的成本与硅基底的成本差不多。硅基gan成品晶圆的成本中,最大的一部分是gan外延。硅基gan需要大约5μm的gan以支持600v的额定电压。对于6英寸基底,gan外延的成本大约$100/μm,价格为500美元。蓝宝石是一种绝缘基底,所以对于6英寸基底,gan外延可以减少到小于2μm或者200美元。而且,由于蓝宝石上ganic可以直接安装在热沉上,并通过使用连接到凸形触点92和94的倒装芯片而组装在印刷电路板上,因此蓝宝石上gan避免了组装和封装成本。

另外,半桥电路和栅极驱动器22、24的集成也去除了组装和封装成本。

以下是制造蓝宝石上ganic半桥电路的过程。首先,使用gan金属-有机化学气相沉积(mocvd)反应器在6英寸的蓝宝石基底12上生长约2μm的gan外延48。然后使用现有技术中公知的隔离、欧姆测定、选通、栅场板加工步骤等,可以在gan外延48中制作ganhemts。接着,可以使用多层金属化来集成上开关14和下开关16,形成垂直功率回路20,以及形成触点以构成半桥电路集成电路(ics)。然后晶圆上的ics可以进行晶圆上测试和背面处理。再接着,可以通过切割晶圆来分离每个半桥电路的ics。然后,将ic裸片的蓝宝石基底12直接芯片贴装88到热沉90。最后,使用凸形触点92和94将ganic裸片贴附到印刷电路板100。

本文已经根据专利法的要求描述了本发明,本领域技术人员能够理解如何进行变化和修改,以满足他们的特定的需求。这样的变换和修改可以在不违反本发明公开的范围和精神的情况下做出。

上述的示例性实施例和优选实施例的具体描述是根据法律的要求以说明和公开为目的呈现的。上述实施例仅为了使得本领域的技术人员理解怎样具体实施本发明,而不能理解为对本发明的限制。本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化和修改。对于实施例中所包括的容差、特征尺寸、特定操作条件、工程规格或类似的实施例间的变化的描述不能理解为对本发明的限制。申请人已经公开与现有技术有关的本发明,同时也考虑了本发明对于未来技术的适应性。本发明的范围由权利要求书定义并等同适用。除非明确说明,否则以单数形式提及的权利要求要素并非意在表示“一个且仅一个”。此外,不论本公开的内容中的元件、组件或处理步骤是否明确记载美国在权利要求书中,都不意味着捐献给公众。除非以短语“用于……的装置”明确叙述该权利要求要素,并且以短语“包括(一或多个)步骤……”来明确叙述该方法或过程,本文中的权利要求要素不应根据美国专利法第112条第6段的规定来解释。

概念

至少揭示了如下概念。

概念1.一种半桥电路,包括:

蓝宝石基底;

氮化镓上开关,其位于所述蓝宝石基底上;

氮化镓下开关,其位于所述蓝宝石基底上并耦接所述氮化镓上开关;

第一导体,其耦接所述上开关;

第二导体,其耦接所述下开关;

电容器;

其中,所述第一导体的一部分和所述第二导体的一部分位于一平面上,所述平面与所述上开关和所述下开关垂直并分离一高度;

其中,所述电容器连接于所述第一导体的所述部分与所述第二导体的所述部分之间。

概念2.如概念1所述的半桥电路,其中:

开关电流通过所述上开关和所述下开关;

返回电流通过所述第一导体的所述部分和所述第二导体的所述部分;

其中,所述开关电流和所述返回电流的路径中的功率回路电感取决于所述高度。

概念3.如概念1所述的半桥电路,其中:

所述高度的范围为1μm至100μm。

概念4.如概念4所述的半桥电路,其中所述功率回路电感的范围为小于50ph至200ph。

概念5.如概念1所述的半桥电路,其中开关电压的范围为10伏至1000伏。

概念6.如概念1所述的半桥电路,其中所述上开关和所述下开关包括常关型n沟道氮化镓晶体管。

概念7.如概念1所述的半桥电路,其中:

所述电容器包括分立电容器,或者包括单片集成有所述第一导体和所述第二导体的金属-绝缘体-金属电容器。

概念8.如概念1所述的半桥电路,其中:

所述平面与所述上开关和所述下开关之间的空间为气体、空气、聚酰亚胺、或者苯并环丁烯(bcb)。

概念9.如概念1所述的半桥电路,还包括:

第一金属柱或第一凸形触点,其耦接所述上开关,用于支撑与所述上开关和所述下开关垂直分离的所述平面上的所述第一导体的所述部分和所述第二导体的所述部分;

第二金属柱或第二凸形触点,其耦接所述下开关,用于支撑与所述上开关和所述下开关垂直分离的所述平面上的所述第一导体的所述部分和所述第二导体的所述部分。

概念10.如概念9所述的半桥电路,还包括:

印刷电路板;

其中所述第一金属柱或所述第一凸形触点和所述第二金属柱或所述第二凸形触点支撑所述印刷电路板。

概念11.如概念1所述的半桥电路,还包括:

热沉,其直接贴装于所述蓝宝石基底。

概念12.如概念1所述的半桥电路,还包括:

第一栅极驱动器;

第二栅极驱动器;

其中所述上开关包括具有源极、漏极和栅极的第一场效应晶体管,其耦接所述第一栅极驱动器;

其中所述下开关包括具有源极、漏极和栅极的第二场效应晶体管,其耦接所述第二栅极驱动器;

其中所述上开关的所述源极连接到所述下开关的所述漏极;

其中所述上开关的源极耦接所述第一栅极驱动器;

其中所述下开关的源极耦接所述第二栅极驱动器;

其中交流电源连接到所述上开关的所述源极和所述下开关的所述漏极;

其中正电压源连接到所述电容器和所述上开关的所述漏极;

其中负电压源连接到搜书电容器和所述下开关的源极。

概念13.如概念12所述的半桥电路,其中:

所述第一栅极驱动器和所述第二栅极驱动器单片集成在所述蓝宝石基底上;

其中所述第一栅极驱动器包括两个n沟道氮化镓晶体管,或者一p沟道氮化镓晶体管和一n沟道氮化镓晶体管;

其中所述第二栅极驱动器包括两个n沟道氮化镓晶体管,或者一p沟道氮化镓晶体管和一n沟道氮化镓晶体管。

概念14.如概念12所述的半桥电路,其中:

来自所述第一栅极驱动器的驱动等于或小于20伏;

来自所述第二栅极驱动器的驱动小于或等于20伏。

概念15.如概念12所述的半桥电路,其中:

所述第一栅极驱动器和所述第二栅极驱动器的额定电压比所述上开关和所述下开关的定电压大5倍以下。

概念16.一种用于制作半桥电路的方法,包括:

在蓝宝石晶圆上生长氮化镓外延;

在所述氮化镓外延中制作上开关和下开关;

在所述氮化镓外延中形成第一栅极驱动器;

在所述氮化镓外延中形成第二栅极驱动器;

形成第一金属柱;

形成第二金属柱;

形成耦接到所述上开关的第一导体,其中所述第一导体的一部分受所述第一金属柱和所述第二金属柱支撑于一平面,该平面与所述上开关和所述下开关垂直并分离一高度;

形成耦接到所述下开关的第二导体,其中所述第二导体的一部分受所述第一金属柱和所述第二金属柱支撑于一平面,该平面与所述上开关和所述下开关垂直并分离一高度;

提供耦接于所述第一导体的所述部分和所述第二导体的所述部分之间的一电容器;

在所述第一栅极驱动器、所述上开关、所述第二栅极驱动器、所述下开关、所述第一金属柱、所述第二金属柱、所述第一导体和所述第二导体之间形成互连,以形成一或多个半桥集成电路。

概念17.如概念16所述的方法,还包括:

测试所述晶圆上的所述半桥集成电路。

概念18.如概念16所述的方法,还包括:

将所述蓝宝石晶圆切割成半桥裸片,每个半桥裸片具有蓝宝石基底;

直接将所述蓝宝石基底贴装到热沉。

概念19.如概念18所述的方法,还包括:

将印刷电路板贴装到所述第一金属柱和所述第二金属柱。

概念20.如概念16所述的方法,其中:

所述氮化镓外延厚约2μm。

概念21.如概念16所述的方法,其中:

开关电流通过所述上开关和所述下开关;

返回电流通过所述第一导体的所述部分和所述第二导体的所述部分;

其中所述开关电流和所述返回电流的路径中的功率回路电感取决于所述高度;

其中所述高度的范围为1μm至100μm。

概念22.如概念21所述的方法,其中所述功率回路电感的范围为小于50ph至200ph。

概念23.如概念16所述的方法,其中开关电压的范围为10伏至1000伏。

权利要求书(按照条约第19条的修改)

1.一种半桥电路,包括:

蓝宝石基底;

氮化镓外延,其位于所述蓝宝石基底上;

上开关,其单片集成于所述氮化镓外延;

下开关,其单片集成于所述氮化镓外延并耦接所述上开关;

第一栅极驱动器,其单片集成于所述氮化镓外延并耦接所述上开关;

第二栅极驱动器,其单片集成于所述氮化镓外延并耦接所述下开关;

第一导体,其耦接所述上开关;

第二导体,其耦接所述下开关;

电容器;

其中,所述第一导体的一部分和所述第二导体的一部分位于一平面上,所述平面与所述上开关和所述下开关垂直并分离一高度;

其中,所述电容器连接于所述第一导体的所述部分与所述第二导体的所述部分之间。

2.如权利要求1所述的半桥电路,其中:

开关电流通过所述上开关和所述下开关;

返回电流通过所述第一导体的所述部分和所述第二导体的所述部分;

其中,所述开关电流和所述返回电流的路径中的功率回路电感取决于所述高度。

3.如权利要求1所述的半桥电路,其中:

所述高度的范围为1μm至100μm。

4.如权利要求2所述的半桥电路,其中所述功率回路电感的范围为小于50ph至200ph。

5.如权利要求1所述的半桥电路,其中开关电压的范围为10伏至1000伏。

6.如权利要求1所述的半桥电路,其中所述上开关和所述下开关包括常关型n沟道氮化镓晶体管。

7.如权利要求1所述的半桥电路,其中:

所述电容器包括分立电容器,或者包括单片集成有所述第一导体和所述第二导体的金属-绝缘体-金属电容器。

8.如权利要求1所述的半桥电路,其中:

所述平面与所述上开关和所述下开关之间的空间为气体、空气、聚酰亚胺、或者苯并环丁烯(bcb)。

9.如权利要求1所述的半桥电路,还包括:

第一金属柱或第一凸形触点,其耦接所述上开关,用于支撑与所述上开关和所述下开关垂直分离的所述平面上的所述第一导体的所述部分和所述第二导体的所述部分;

第二金属柱或第二凸形触点,其耦接所述下开关,用于支撑与所述上开关和所述下开关垂直分离的所述平面上的所述第一导体的所述部分和所述第二导体的所述部分。

10.如权利要求9所述的半桥电路,还包括:

印刷电路板;

其中所述第一金属柱或所述第一凸形触点和所述第二金属柱或所述第二凸形触点支撑所述印刷电路板。

11.如权利要求1所述的半桥电路,还包括:

热沉,其直接贴装于所述蓝宝石基底。

12.如权利要求1所述的半桥电路,

其中所述上开关包括具有源极、漏极和栅极的第一场效应晶体管,其耦接所述第一栅极驱动器;

其中所述下开关包括具有源极、漏极和栅极的第二场效应晶体管,其耦接所述第二栅极驱动器;

其中所述上开关的所述源极连接到所述下开关的所述漏极;

其中所述上开关的源极耦接所述第一栅极驱动器;

其中所述下开关的源极耦接所述第二栅极驱动器;

其中交流电源连接到所述上开关的所述源极和所述下开关的所述漏极;

其中正电压源连接到所述电容器和所述上开关的所述漏极;

其中负电压源连接到搜书电容器和所述下开关的源极。

13.如权利要求12所述的半桥电路,其中:

所述第一栅极驱动器和所述第二栅极驱动器单片集成在所述蓝宝石基底上;

其中所述第一栅极驱动器包括两个n沟道氮化镓晶体管,或者一p沟道氮化镓晶体管和一n沟道氮化镓晶体管;

其中所述第二栅极驱动器包括两个n沟道氮化镓晶体管,或者一p沟道氮化镓晶体管和一n沟道氮化镓晶体管。

14.如权利要求12所述的半桥电路,其中:

来自所述第一栅极驱动器的驱动等于或小于20伏;

来自所述第二栅极驱动器的驱动小于或等于20伏。

15.如权利要求12所述的半桥电路,其中:

所述第一栅极驱动器和所述第二栅极驱动器的额定电压比所述上开关和所述下开关的定电压大5倍以下。

16.一种用于制作半桥电路的方法,包括:

在蓝宝石晶圆上生长氮化镓外延;

在所述氮化镓外延中制作上开关和下开关;

在所述氮化镓外延中形成第一栅极驱动器;

在所述氮化镓外延中形成第二栅极驱动器;

形成第一金属柱;

形成第二金属柱;

形成耦接到所述上开关的第一导体,其中所述第一导体的一部分受所述第一金属柱和所述第二金属柱支撑于一平面,该平面与所述上开关和所述下开关垂直并分离一高度;

形成耦接到所述下开关的第二导体,其中所述第二导体的一部分受所述第一金属柱和所述第二金属柱支撑于一平面,该平面与所述上开关和所述下开关垂直并分离一高度;

提供耦接于所述第一导体的所述部分和所述第二导体的所述部分之间的一电容器;

在所述第一栅极驱动器、所述上开关、所述第二栅极驱动器、所述下开关、所述第一金属柱、所述第二金属柱、所述第一导体和所述第二导体之间形成互连,以形成一或多个半桥集成电路。

17.如权利要求16所述的方法,还包括:

测试所述晶圆上的所述半桥集成电路。

18.如权利要求16所述的方法,还包括:

将所述蓝宝石晶圆切割成半桥裸片,每个半桥裸片具有蓝宝石基底;

直接将所述蓝宝石基底贴装到热沉。

19.如权利要求18所述的方法,还包括:

将印刷电路板贴装到所述第一金属柱和所述第二金属柱。

20.如权利要求16所述的方法,其中:

所述氮化镓外延厚约2μm。

21.如权利要求16所述的方法,其中:

开关电流通过所述上开关和所述下开关;

返回电流通过所述第一导体的所述部分和所述第二导体的所述部分;

其中所述开关电流和所述返回电流的路径中的功率回路电感取决于所述高度;

其中所述高度的范围为1μm至100μm。

22.如权利要求21所述的方法,其中所述功率回路电感的范围为小于50ph至200ph。

23.如权利要求16所述的方法,其中开关电压的范围为10伏至1000伏。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1