半导体系统中的湿度控制的制作方法

文档序号:15203525发布日期:2018-08-21 04:51阅读:337来源:国知局

半导体器件的生产要求诸如晶圆、光罩(reticle)和玻璃基板的基板以及用于存储和转移这些基板的容器和用于存储这些基板的堆叠器的清洁。微粒和其它污染物的存在会对产量产生负面影响。半导体基板的运输通常在容器(诸如盒子、载体、托盘、前开式晶圆盒(foup)、前开式运送箱(fosb)、标准机械接口(smif)、晶盒(pod)和箱子)中进行。例如,foup通常包括定位在外壳内用于支撑基板的一个或多个梳状引导结构。foup还包括可以从外壳移除并允许基板搬运机器人从外壳接近基板的门。通常将半导体基板存储在储料器中,储料器包括用于保持大量基板的存储腔室。

用于存储和转移半导体基板的容器(诸如foup)需要定期清洁,以防止基板污染并维持基板所需的清洁标准。此外,可以向容器的内部提供净化气体,以进一步防止脱气和可能污染基板。

储料器可以用于存储半导体基板,诸如存储裸露的基板(例如,无容器的基板)或部署在诸如foup之类的容器中的基板。除了维持储料器内的清洁,还可以在储料器内提供净化气体,以防止污染。

有必要改善容器和储料器的清洁。

具体实施方式

本发明公开了形成用于半导体基板的清洁环境的方法和系统,其包括形成具有低湿度水平的环境。湿度传感器可以用于检测环境中的湿度水平,以将环境保持在预定湿度设定点附近的预定区间内或预定湿度设定点处。可以将气体提供给环境,直到湿度水平降低至设定点附近的预定区间内的值或设定点。

根据优选实施例,环境中的气体可以被再循环,例如以减少气体的消耗。

有利地,可以将湿度降低组件连接到再循环的气流,以降低返回气流中的湿度水平。

此外,当湿度水平超过预定阈值时,可以优选地添加新鲜干燥气体。新鲜干燥气体可以例如直接添加到环境或再循环的气流。预定阈值例如可以是设定点附近的预定区间的边界之一。

湿度水平可以有利地从环境中的气体或者从所提供的气体的排气中或再循环的气流中的气体测量。

湿度水平还可以优选地从压力降低的速率测量,例如,环境内的气体可以被抽空,高湿度气体比低湿度气体抽空更慢。

在一些实施例中,在清洁之后,容器可以隶属于用于去除污染物的腔室。该腔室可以是用于对来自容器的污染物脱气(outgasing)的真空腔室。该腔室可以是用于从容器去除污染物的净化腔室。真空腔室中的气体的抽空或净化腔室中的气体的净化可以连接到湿度水平传感器,使得当容器中的湿度水平达到设定点时(诸如低于10%或低于5%相对湿度,或在5和10%湿度之间)处理可以停止或继续进行不同的处理模式。在一些实施例中,容器的内部可以用低湿度气体(诸如干燥空气或干燥氮气)来净化,直到容器中的湿度水平达到设定点(诸如低于10%或低于5%相对湿度,或者5%和10%湿度之间)。然后净化气体可以被再循环,例如基于湿度反馈添加新鲜干燥气体以维持恒定的湿度水平。

在一些实施例中,储料器可以具有再循环气体,以维持清洁水平。储料器可以具有反馈回路,以维持恒定的湿度水平。例如,当储料器中的湿度超过设定点时,可以添加新鲜干燥气体。再循环气体可以在储料器内部和其中存储半导体基板的存储模块外部提供。净化气体可以提供给存储模块以维持低微粒环境。到存储模块的净化气体可以被再循环,并基于湿度反馈添加新鲜干燥气体。

图1a-1b图示根据一些实施例的湿度控制系统。环境100例如在用于存储半导体基板以供运输的容器内或在用于存储半导体基板或用于存储容器的腔室内形成。为了使用替代措辞,这种容器以及用于保持或处理这种容器的腔室有时可以在本说明书中直接被称为环境。

环境100可以用不活泼气体120(诸如空气或氮气)来净化。湿度传感器110可以连接到不活泼气体的排气流130,用于测量排气流中的湿度水平。可替代地,湿度传感器可以连接到环境100,以测量环境中的湿度。湿度传感器可以包括湿度计,湿度计可以使用电容式湿度计、电阻式湿度计、热湿度计或重力湿度计来测量湿度。湿度传感器可以间接地测量湿度,诸如使用压力传感器来测量压力降低的速率以提取湿度水平。

在一些实施例中,排气流130可以被再循环,例如,可以将来自排气流130的气流提供给输入流120。可以包括气体净化器和湿度降低的气体调节系统160可以用于调节净化气流。例如,输入气流120可以包括干燥气体,例如,具有小于10%、小于5%、或5%和10%湿度之间的湿度水平的干燥气体。取决于环境100中的湿度,排气流130可以具有更高的湿度。气体调节系统160可以例如通过用过滤器去除微粒并且通过用排气流中的干燥剂去除湿气来调节排气流130。

在一些实施例中,再循环的回路,例如排气流130到输入流120(通过气体调节系统160)的连接,可以被供以新鲜干燥气体输入170。可以使用新鲜干燥气体输入170来进一步降低输入流120中的湿度,例如,通过在再循环气体中的湿度水平(例如由湿度传感器110测量的)超过特定设定点时添加新鲜干燥气体。

例如用不活泼气体120净化环境100可以降低环境中的湿度。环境中的湿度115可以在时间t150处降低到设定点140。在一些实施例中,当湿度达到湿度设定点140时,净化气体120可以被停止,或者可以发生另一个处理条件。

在一些实施例中,本发明公开了使用湿度作为用于维持存储环境中(诸如在包含半导体基板的容器中或者在存储容器或半导体基板的储料器中)的清洁的条件。

图2a-2c图示根据一些实施例的用于湿度受控环境的流程图。在图2a中,可以处理环境的内部,直到环境中的湿度降低到设定点。可以在用于处理容器(诸如用于去除容器上的污染物)的腔室内形成或提供环境。例如,可以将容器提供到腔室中。容器可以被污染物(诸如粘附到容器表面的湿气或微粒,或者容器壁内嵌入的分子)污染。可以首先清洁容器以去除表面污染物,并且可选地进行干燥。该腔室可以是用于对来自容器中的污染物脱气或者用于去除容器表面上粘附的湿气的真空腔室。可以处理腔室中的真空水平,直到湿度水平降低到设定值(诸如低于10%、低于5%相对湿度或者5%至10%湿度之间)。真空腔室可以在低湿度设定点维持一段时间。

操作200在腔室内提供(尤其是放置或放入)容器。容器可以被清洁,并且可选地被干燥或部分干燥。容器可以被放置在开放式构造中,诸如容器的盖子被打开或放置在使容器内部暴露的位置。

操作210去除湿气直到湿度达到设定点。例如,腔室可以使用泵送机构被抽空。泵/净化处理可以用于去除湿气,例如,腔室被抽空,随后供应净化气体。可以重复抽空和净化处理,直到湿度水平降低到设定点附近的预定区间内的值或设定点。湿度水平可以从自腔室抽出的排气测量。湿度水平可以从腔室内的残留气体测量。湿度水平可以间接地测量,例如从腔室内气体的泵送速率测量。

操作220可选地维持腔室中的低湿度状况预定的时间段。低湿度水平可以有助于去除污染物(诸如容器表面的湿气)或用于对容器中的污染物脱气。另外,低于10%或5%的低湿度水平可以为容器提供长期清洁。

在图2b中,环境的内部可以用低湿度气体(诸如干燥空气或干燥氮气)净化,直到环境中的湿度降低到设定点。环境可以在用于包含半导体基板的容器内。例如,为了使存储在其中的半导体基板不被例如粘附到容器表面的湿气或微粒或嵌入容器壁内的分子污染,需要清洁容器的内部。容器可以充满低湿度气体,以帮助防止污染物到达容器中的基板。容器内的湿度水平可以低于设定点(诸如低于10%或5%相对湿度),以提供长期污染防护。

操作240可选地清洁和可选地干燥容器。

操作250用气流净化容器的内部,直到湿度水平达到设定点。容器可以被预先清洁和干燥。容器可以是使用中的容器,例如,在净化操作之前没有立即清洁。湿度水平可以从代表容器中湿度水平的信号来测量或计算。例如,湿度水平可以使用湿度计从容器抽出的排气中测量。湿度水平可以从容器中压降的速率来测量。例如,可以停止净化气体,并且容器内的气体被抽空,此时,可以测量压力降低速率用于湿度水平的指示。净化气体可以恢复,并且可以重复该处理直到湿度水平令人满意。

净化气体可以是新鲜干燥气体,或者净化气体可以是再循环气体。如果净化气体是再循环气体,那么可以使用湿度控制(例如,湿度降低系统(诸如干燥剂过滤器))来确保返回气体具有低湿度。此外,可以添加新鲜干燥气体以维持低湿度水平。可以基于例如来自安装在返回气体中的湿度传感器的湿度反馈来添加新鲜气体。

在图2c中,第一环境的内部可以用低湿度气体(诸如干燥空气或干燥氮气)来净化,直到环境中的湿度降低到设定点附近的预定区间内的值或设定点。第二环境可以在第一环境中与用于第二环境的另一种净化气体一起形成。第一环境可以是用于存储容器的储料器,而第二环境可以是用于容纳半导体基板的容器。存储在容器中的半导体基板可以通过经过容器的净化气体保持在清洁环境中,并且容器可以通过经过储料器的净化气体保持在清洁环境中。储料器和/或容器内的湿度水平可以低于设定点(诸如低于10%、5%相对湿度或5%和10%湿度之间),以提供长期污染防护。到容器和/或储料器的净化气体被再循环,基于湿度反馈添加新鲜干燥气体。

操作270再循环储料器内的气体。气体再循环可以降低气体消耗,这可以降低储料器的运行成本。再循环气体可以经受除湿组件(诸如干燥剂系统),以维持储料器中的低湿度环境。

操作280例如基于储料器中或再循环气体中测得的湿度水平向再循环气体添加新鲜气体,以维持储料器中的期望湿度水平。

净化气体可以被供给至存储在储料器中的容器。净化气体可以将容器中的半导体基板维持在期望清洁水平。净化气体可以在离开容器之后与储料器中的再循环气体融合。净化气体可以再循环,例如,在返回到容器之前,离开容器的排气流可以被过滤、微粒过滤以及湿气过滤。例如,基于容器中或再循环气体中测得的湿度水平,可以将新鲜气体添加到通过容器的再循环气体,以维持容器中的期望湿度水平。

在一些实施例中,本发明认识到高于特定设定点(诸如高于10%或高于5%)的相对湿度会污染半导体基板。例如,数据显示,如果在净化之后湿度水平仍然高,那么,例如由于液体流出,脱气会高并且湿度水平会超调(overshoot)。相反,如果容器被净化至5-10%或更低的湿度水平,那么在净化停止之后,湿度水平将逐渐达到室内湿度。

图3a-3b图示根据一些实施例的、用于具有不同湿度水平的净化系统的构造。半导体基板380可以存储在容器300中。净化气体320可以被供给至容器。容器中的湿度水平可以由湿度传感器310(诸如湿度计)来测量。净化气体320可以具有低湿度,诸如干燥氮气或干燥空气,例如湿度低于10%或5%。例如,由于净化气体驱除湿气,容器中的湿度水平312和315可以随时间逐渐降低。在时间t350,净化气体可以停止。

如果湿度水平315低于范围360,那么湿度可以逐渐增加375至环境湿度370。如果当在时间t350停止净化时容器中的湿度水平312仍然高,那么湿度水平可以在返回到环境值370之前超调372。超调可以由容器中的残余湿气造成,并且可以导致容器中基板的污染。

因此,在一些实施例中,本发明公开了形成低湿度环境,例如小于10%、小于5%湿度,在一些情况下小于2%或1%湿度,或5%和10%湿度之间,以降低存储在环境中的基板的污染。

在一些实施例中,本发明公开了用于将容器(诸如容器的主体和盖子)去污的去污腔室。真空腔室可以用于去污,例如通过抽空粘附到容器表面的任何污染物,或者通过对侵入(horn)容器材料的污染物脱气。去污可以具有低于设定点的湿度(诸如低于10%或5%相对湿度,或5%和10%湿度之间)。去污可以在一段时间内(诸如超过1分钟,超过2分钟、5分钟或10分钟)维持低湿度水平。去污腔室的低湿度水平可以改善待去污的物体的清洁,诸如在从去污腔室移除之后维持长期清洁。

图4a-4b图示了根据一些实施例的用于真空去污腔室的构造。腔室400可以包括用于抽空腔室内的气体的泵送机构。泵送机构可以形成离开腔室400的排气流402。湿度传感器410可以连接到排气流402,以测量腔室中的湿度水平。可替代地,可以将湿度传感器415连接到腔室,以测量腔室中的湿度水平。

在操作中,可以将可以包括容器主体480和容器盖子485的容器放置在腔室400中,例如用于去污。腔室400中的真空环境可以去除微粒并且也可以对来自容器的分子脱气。容器可以在放入腔室中之前被清洁。容器可以在放入腔室中之前被干燥或部分干燥。可替代地,腔室可以用于干燥容器。

在一些实施例中,本发明公开了用于去污的低湿度腔室。低湿度可以确保长期清洁。例如,在高湿度环境中的去污可以显示容器被清洁,但是在一段时间之后,可以从容器释放湿气,从而在存储的基板上形成微粒。在去污处理期间,湿气可以被吸收在容器表面上。因此,在低湿度下的去污可以提供长期清洁,例如防止湿气或微粒从容器中释放。

在一些实施例中,去污腔室中的压力可以例如从大气压降低430至基础压力。同时,湿度水平450也可以降低。基础压力可以维持一段时间,例如,直到时间t445,直到湿度水平达到设定点440(诸如低于10%或低于5%相对湿度水平,或者5%和10%湿度之间)。因此,湿度可以表示去污处理中的标准,这意味着在满足湿度条件之前去污未完成。

在一些实施例中,湿度条件可以包括维持低湿度环境一段时间,以确保容器被彻底清洁。

图5a-5b图示了根据一些实施例的用于真空去污腔室的构造。腔室500可以包括用于抽空腔室内的气体的泵送机构。泵送机构可以形成离开腔室500的排气流502。腔室500可以包括用于向腔室供给气流的净化机构。净化机构可以形成到腔室500的输入流504。湿度传感器510可以连接到排气流502,以测量腔室中的湿度水平。可替代地,可以将湿度传感器515连接到腔室,以测量腔室中的湿度水平。

在操作中,可以将可以包括容器主体580和容器盖子585的容器放置在腔室500中,例如用于去污。腔室可以经受泵送和净化的循环,例如通过泵出腔室中的气体而降低腔室内的压力,然后使新气体流到腔室。净化可以在泵送动作期间发生。

腔室500中的真空环境可以去除微粒并且也可以对来自容器的分子脱气。净化可以帮助泵送动作,例如通过推出污染物。

在一些实施例中,去污腔室中的压力可以例如从大气压降低530至基础压力。在一定的泵送时间之后,可以引入净化气体,从而增加535腔室压力。湿度水平550也可以降低。基础压力可以维持一段时间,例如直到时间t545,直到湿度水平达到设定点540(诸如低于10%或低于5%相对湿度水平,或者5%和10%湿度之间)。

湿度水平可以直接从湿度计测量。

可替代地,湿度水平可以从压力率(例如,腔室的泵送速率)来计算。例如,与中等泵送速率564或低泵送速率566相比,高泵送速率562可以指示腔室中的低湿度水平。

图6a-6b图示了根据一些实施例的用于去污容器的流程图。在图6a中,操作600清洁容器。操作610将容器放入腔室中。操作620抽空腔室中的气体,直到湿度达到设定点。可以使用泵/净化动作来抽空腔室中的气体。当湿度达到设定点时,操作630停止抽空气体。

在图6b中,操作650清洁容器。操作660将容器放入腔室中。操作670将气体引入腔室中。可以使用泵/净化动作将气体供给到腔室中。当湿度的指示达到设定点时,操作680停止引入气体。

在一些实施例中,本发明与2012年6月23日提交的申请号为13/531,500的dms032a(半导体清洁器系统和方法,semiconductorcleanersystemsandmethods)相关,该申请通过引用并入本文。本申请的方法和系统可以应用于dms032a的图21中所示的实施例、图23a-23b中所示的实施例以及图25中所示的实施例。

在实施例中,本发明公开了清洁之后对部件进行去污的去污腔室。去污可以采用真空腔室,优选地是高真空,例如小于10-3托,或优选地小于10-6托。真空腔室可以加速部件的脱气,从而去除部件内任何积存的气体。

真空腔室可以被设计为提供具有有效的泵送和高泵送电导的构造。真空腔室还可以包括加热机构(诸如ir加热器或腔室壁加热器)。加热器可以被加热到40℃和90℃之间,并且优选地在大约70℃。加热温度取决于材料,例如,低于100℃的低温对于聚合物材料是优选的,并且高于100℃的高温可以用于金属。

在实施例中,可以提供脱气监视传感器,诸如残余气体分析(rga),以测量真空腔室内的污染物的释放,然后其可以用于监视去污处理。

在实施例中,在真空腔室内提供惰性净化气体(诸如氮气),以回填由对污染物脱气留下的任何间隙。可以执行循环的加压和抽真空,从而对污染物脱气,然后用惰性气体回填。

在实施例中,在用高真空对部件进行去污之后,在打开之前用氮气对腔室加压,从而有效地用氮分子涂覆部件的表面(并填充子表面),从而进一步改善清洁并防止粘附微粒。

在一些实施例中,本湿度控制构造可以应用于dms040的图21。真空腔室包括连接到真空泵(诸如涡轮泵或低温泵)的真空管线,从而在腔室内创建高真空。加热器部署在真空腔室中,用于加热腔室和容器的部件。可以包括传感器(诸如用于监视脱气种类的rga)。净化气体可以为真空腔室提供惰性环境,例如为了在将部件转移到外部之前防止污染物回流。

真空腔室可以包括湿度传感器(诸如湿度计),其可以连接到腔室或真空管线。湿度传感器可以呈现用于去污处理的条件或要求,例如,去污处理可以持续到湿度水平下降到设定点。在一些实施例中,去污处理可以在达到湿度设定点之后进一步持续一段时间。

在实施例中,本发明公开了一种组装站,优选地是集成组装站,以在控制环境下组装单独清洁的部件。为了高度清洁,应当考虑避免暴露于潜在的污染源之下。因此,在被单独清洁之后,在清洁环境中组装部件以维持清洁水平,例如以最小化由于暴露于外部环境中而造成的内部容器的任何污染。

在实施例中,组装站用氮气填充。因此,在从打开以进行转移处理之前填充有氮气的真空去污腔室转移之后,将这些部件转移到填充有氮气的组装站。因此,组装站可以在清洁之后保持部件的清洁。

在实施例中,本发明公开了用于组装双容器光罩载体的组装站。组装站可以在内部容器与外部容器之间的以氮气净化的清洁环境(优选地是氮气环境)中提供组装处理。

在一些实施例中,本湿度控制构造可以应用于dms040的图23a-23b。待组装的容器的部件被转移到组装站,组装站包括氮气净化气体入口。底部支撑件被放置在氮气喷嘴上。底部支撑件和顶盖然后被放置在底部支撑件上。然后将顶盖带入组装站。在氮气喷嘴向底部支撑件提供氮气的情况下,顶盖与底部支撑件组装在一起,从而有效地净化并提供氮气至由底部支撑件和顶盖形成的外部容器内的容量(volume)。在组装站处于氮气环境,并且在一些情况下,稍微加压的情况下,组装站打开,然后将组装的载体转移到外部。

用于组装站的氮气净化和用于底部支撑件的氮气喷嘴可以使用过滤器和湿度传感器连同可选的新鲜氮气源被再循环,用于控制湿度水平。例如,过滤器可以用于去除或吸收再循环路径中的氮气中的湿气。当湿度水平超过阈值时,湿度传感器可以连接到新鲜的氮气源,以添加新鲜的氮气。

在实施例中,本发明公开了用于清洁器系统的装载和卸载站,对物体内部的容量进行氮气净化。为了维持载体内部物体的清洁水平,内部容量不断地用惰性气体(诸如氮气)净化。因此,本发明公开了用于转移和/或存储站的惰性气体净化,从而确保内部容量的恒定净化。在一些实施例中,本湿度控制构造可以应用于dms040的图25。双容器载体被放置在站中的氮气净化喷嘴上。在氮气喷嘴向双容器载体的底部支撑件提供氮气的情况下,外部容器内的容量不断地用清新的氮气净化。

用于底部支撑件的氮气净化可以使用过滤器和湿度传感器连同可选的新鲜氮气源被再循环,以控制湿度水平。例如,过滤器可以用于去除或吸收再循环路径中的氮气中的湿气。当湿度水平超过阈值时,湿度传感器可以连接到新鲜氮气源,以添加新鲜的氮气。

在一些实施例中,本发明公开了用于调节容器的处理,包括净化容器内部,直到容器中的湿度水平令人满意,例如低于设定点(诸如10%或5%相对湿度)。湿度条件可以维持一段时间,以确保容器内部具有可接受的湿度水平。容器内部的低湿度水平可以改进半导体基板的存储环境的清洁,这可以在容器从清洁支撑件(诸如用于净化容器的净化系统)移除之后提供长期清洁环境。

图7a-7b图示了根据一些实施例的用于调节容器的构造。容器700可以包括用于净化容器内部的净化机构。净化机构可以包括提供给容器700的输入流702,容器700包括连接到主体780的盖子785。净化机构可以包括离开容器700的排气流703。湿度传感器710可以连接到排气流703,以测量容器中的湿度水平。可替代地,可以将湿度传感器连接到容器,以测量容器中的湿度水平。

在操作中,可以用低湿度气体(诸如干燥空气或干燥氮气)来净化可以具有基板存储在其中的容器。可以执行恒定的净化730,其中不活泼气体流可以供给至容器内部。可替代地,可以执行泵/净化动作,包括净化流732,随后是泵送期735。恒定的净化或泵/净化动作可以持续到时间t745,直到湿度水平达到设定点740(诸如低于10%或低于5%相对湿度水平,或者5%和10%湿度之间)。因此,湿度可以表示净化处理中的标准,这意味着在满足湿度条件之前容器的净化并未完成。

在一些实施例中,湿度条件可以包括维持低湿度环境一段时间,以确保容器被彻底清洁。在一些实施例中,本发明公开了用于维持容器清洁的低湿度净化处理。低湿度可以确保所存储的基板的长期清洁。例如,在完成净化之后,如果容器中的湿度水平低于设定点,那么可以长时间保持基板清洁。

图8a-8c图示了根据一些实施例的用于调节容器的流程图。在图8a中,操作800用气流净化容器的内部,直到湿度水平达到设定点。在图8b中,操作820重复泵送和净化容器的内部,直到湿度水平达到设定点。

在图8c中,操作840将基板存储在容器中。操作850将气流引入容器的内部。操作860监视气流的排气流中的湿度水平。当湿度水平达到设定点时,操作870停止气流。

在一些实施例中,本发明与2014年12月13日提交的申请号为14/569,662的dms040(再循环基板容器净化系统和方法,recirculationsubstratecontainerpurgingsystemsandmethods)相关,该申请通过引用并入本文。本申请的方法和系统可以应用于dms040的实施例。例如,湿度控制构造可以应用于图2b、图3a-3b、图5、图7、图8、图10和图12中所示的实施例。

在一些实施例中,本发明公开了用于维持清洁环境的处理。环境可以是用于存储容器和半导体基板的储料器。处理可以包括在储料器内部形成再循环流。再循环流可以包括不活泼气体(诸如空气或氮气)。再循环流可以维持在恒定的湿度(诸如在10%或5%相对湿度)。通过监视储料器中的湿度水平,可以维持恒定的湿度,并且当湿度水平超过湿度设定点时,可以将新鲜干燥气体添加到储料器中。当湿度水平返回到设定点以下时,可以停止新鲜干燥气体。因此,湿度在时间间隔内可以是恒定的,例如在该时间间隔内的平均湿度水平,并且瞬时湿度可以在设定点附近波动。此外,再循环流可以被过滤以去除微粒和湿气。储料器的低湿度水平可以改善用于所存储的半导体基板的存储环境的清洁。

图9a-9b图示了根据一些实施例的用于调节储料器的构造。储料器900可以包括存储腔室940,该存储腔室940可以用于存储半导体基板980(诸如硅晶圆或光罩)。如图所示,基板980裸露地存储在存储腔室940中。在一些实施例中,基板可以存储在容器中,然后存储在存储腔室中。

为了维持存储腔室中的清洁环境,可以提供净化气体920。净化气体可以包括层流(laminarflow),例如以不存在任何湍动或死空间方式流动,以防止微粒污染基板。

在一些实施例中,净化气体可以被再循环,例如以减少气体的消耗。再循环可以是持续的,例如,气体在存储腔室上被持续地循环。再循环可以是间歇的,例如再循环气体可以在恢复流动之前停止一段时间。用于过滤再循环气体的湿气的过滤器970例如可以在再循环路径中提供,以减少再循环气体中的湿气。湿度传感器910(诸如湿度计)可以连接到存储腔室(或再循环气体的再循环路径)。例如,气体入口930可以连接到存储腔室,以向存储腔室提供新鲜干燥气体935。新鲜干燥气体可以是不活泼气体(诸如空气或氮气)。新鲜干燥气体可以具有低湿度(诸如小于5%或小于2%湿度)。

当传感器指示湿度水平超过设定点912时(诸如大于10%或大于5%相对湿度),气体入口930可以链接到湿度传感器910以提供气流935。在一些实施例中,当湿度水平超过高湿度水平(诸如6%、7%、8%、9%或10%)时,气流935可以流动。当湿度水平降低到低湿度水平(诸如5%、6%、7%、8%或9%)时,气流935可以停止。例如,高水平可以是6%湿度,并且低水平可以是5%湿度。因此存储腔室中的湿度水平可以在5%和6%湿度水平之间波动。

在一些实施例中,可以将半导体基板存储在保护性容器中,并将容器存储在存储腔室中。净化气体可以在存储腔室中被提供,以防止存储在其中的保护性容器的污染。可以在保护性容器中提供另一种净化气体,以防止存储在其中的基板的污染。任一种净化气体或两者都可以被再循环。湿度传感器可以用于调节存储腔室或保护性容器中的湿度水平。

图10a-10b图示根据一些实施例的具有湿度控制的堆叠器构造。在图10a中,堆叠器1000可以包括用于存储保护性容器1041的存储腔室1001。多个半导体基板1080可以存储在保护性容器1041中。可以在存储腔室1001中提供层流净化气流1020,以提供清洁环境用于保护性容器1045。净化流1020可以被再循环,其中湿气过滤器1070部署在再循环路径中,以降低再循环的净化流中的湿气含量。在一些实施例中,可以将可选的气流1021添加到再循环路径,例如,以补偿再循环路径中的任何气体损失,和/或在存储腔室1001中维持正压力(例如,高于大气压)。湿度传感器1010可以连接到存储腔室1001,以测量存储腔室中的湿度。可替代地,可以将湿度连接到再循环路径上的任何位置,以测量再循环气体中的湿度。湿度传感器1010可以用于控制新鲜干燥气体1030,以调节存储腔室中的湿度水平。例如,如果湿度超过上水平,那么可以开始新鲜干燥气体1030,直到湿度下降到低于下湿度水平。

净化气体1040可以用于为保护性容器1041提供清洁环境。净化气体1040可以流过半导体基板,然后与存储腔室中的净化流融合。

在图10b中,堆叠器1005可以包括用于存储保护性容器1046的存储腔室1006。多个半导体基板1085可以存储在保护性容器1046中。可以在存储腔室1006中提供层流净化流1025,以便为保护性容器1046提供清洁环境。净化流1025可以被再循环,其中湿气过滤器1075部署在再循环路径中,以降低再循环的净化流中的湿气含量。在一些实施例中,可以将可选的气流1026添加到再循环路径中,例如,以补偿再循环路径中的任何气体损失,和/或在存储腔室1006中维持正压力(例如,高于大气压)。湿度传感器1015可以连接到存储腔室1006,以测量存储腔室中的湿度。可替代地,可以将湿度连接到再循环路径上的任何位置,以测量再循环气体中的湿度。湿度传感器1015可以用于控制新鲜干燥气体1035,以调节存储腔室中的湿度水平。例如,如果湿度超过上限,那么新鲜干燥气体1035可以开始,直到湿度下降到低于下湿度水平。

净化气体1045可以用于为保护性容器1046提供清洁环境。净化气体1045可以流过半导体基板,然后再循环回到保护性容器1046,其中湿气过滤器1076部署在再循环路径中,以减少再循环的净化流中的湿气含量。湿度传感器1016可以连接到再循环路径上的位置,以测量再循环气体中的湿度。湿度传感器1016可以用于控制净化气体1045的流动,以调节保护性容器中的湿度水平。例如,净化气体1045具有正常流率。如果湿度超过上水平,那么净化气体1045可以增加到超过正常流率,直到湿度下降到低于下湿度水平。之后,净化气体1045可以返回到正常流率。该处理可以重复,这可以将保护性容器内部的湿度控制在下水平与上水平之间。

图11a-11b图示根据一些实施例的用于调节堆叠器的流程图。在图11a中,当腔室中的湿度水平超过设定点时,操作1100将新鲜干燥气流引入腔室。

在图11b中,操作1120将工件存储在腔室中。操作1130可选地净化工件。操作1140再循环腔室内的气体。操作1150监视腔室内的湿度水平。当湿度水平超过设定点时,操作1160将新鲜气流引入腔室。

在一些实施例中,本发明与2012年6月28日提交的申请号为13/537,009的dms033a(半导体清洁器系统和方法,semiconductorcleanersystemsandmethods)有关,该申请通过引用并入本文。本申请的方法和系统可以应用于dms033a的图2a-2b、图3a-3b中所示的实施例,图7、图8中所示的实施例以及图19中所示的实施例。

使用过滤器和湿度传感器连同可选的新鲜氮气源来再循环氮气净化,用于控制湿度水平。例如,过滤器可以用于去除或吸收再循环路径中的氮气中的湿气。湿度传感器可以连接到新鲜氮气源,以便当湿度水平超过阈值时添加新鲜氮气。

在一些实施例中,本发明公开了用于维持清洁环境的净化气体系统。净化气体系统可以由湿度传感器控制,例如,当湿度水平超过阈值时向环境供给新鲜干燥气体。净化气体系统可以包括用于使环境内的气体再循环的再循环通路。再循环通路可以包括附加的新鲜干燥气体供给,例如,以补偿再循环路径中的任何气体损失。

图12a-12c图示了根据一些实施例的净化气体构造。在图12a中,净化气体系统900可以包括由湿度传感器控制的气体源。例如,气体源可以被配置为供给新鲜干燥气体940(例如,氮气或空气)。阀950可以连接到气流路径,以打开或关闭气流940。湿度传感器930可以连接到环境910(诸如容器或腔室)。阀950可以由湿度传感器控制,例如,当由湿度传感器930测量的环境910中的湿度超过第一阈值水平(诸如10%或大约5%相对湿度以上)时可以打开阀(气体940可以流动)。当由湿度传感器930测量的环境910中的湿度下降到第二阈值水平以下(诸如低于10%或低于5%相对湿度)时可以关闭阀950。可以使用任何其它范围的湿度(诸如10%和5%相对湿度之间,或6%和5%相对湿度之间)。

图12b示出了可以包括再循环气体路径1221的净化气体系统的另一种构造。因此净化气体可以在环境1211中再循环,其中净化气体由过滤器1271(诸如微粒过滤器和/或湿气过滤器)过滤。再循环气体路径可以由泵系统1261形成。湿度传感器1231可以连接到再循环气体路径。阀1251可以连接到新鲜干燥气体1241,并且可以由湿度传感器控制,例如,当由湿度传感器1231测量的环境1211中的湿度超过第一阈值水平(诸如10%或大约5%相对湿度以上)时可以打开阀(气体1241可以流动)。当由湿度传感器1231测量的环境1211中的湿度下降到第二阈值水平以下(诸如低于10%或低于5%相对湿度)时可以关闭阀1251。

图12c示出了净化气体系统的另一种构造,其可以包括具有新鲜干燥气体流1282的再循环气体路径1221。因此净化气体可以在环境1212中再循环,其中净化气体由过滤器1272(诸如微粒过滤器和/或湿度过滤器)过滤。再循环气体路径可以由泵系统1262形成。新鲜干燥气体1282可以被添加到再循环气体路径,例如,以补偿气体损失或减少环境1212中的湿气增加。

湿度传感器1232可以连接到再循环气体路径。阀1252可以连接到新鲜干燥气体1242,并且可以由湿度传感器控制,例如,当由湿度传感器1232测量的环境1212中的湿度超过第一阈值水平(诸如10%或大约5%相对湿度以上)时,阀可以打开(气体1242可以流动)。当由湿度传感器1232测量的环境1212中的湿度下降到第二阈值水平以下(诸如低于10%或低于5%相对湿度)时,阀1252可以关闭。

在一些实施例中,本发明公开了用于高水平清洁制品(诸如极紫外(exjy)光罩载体)的处理和系统。以下描述使用euv光罩载体作为示例,但是本发明不限于此,并且可以应用于具有严格清洁要求的任何物体(诸如低微粒污染和低脱气部件)。

图13a-13b图示了根据一些实施例的用于存储euv光罩载体的构造。在图13a中,euv光罩1300可以存储在双容器载体1309中,并且在内容器1301与外容器1303之间的空间1307中具有氮气。内容器可以由金属(诸如铝)制成并且可以包括与下部支撑件1302配合的上盖1301。外容器通常由低脱气聚合物制成,包括与下部支撑件1303b配合的上盖1303a。这两个容器都可以具有用于由操作员或自动运输系统保持的把手。示出了用于外容器的上盖1303a的把手1305。外容器的支撑件1303b可以具有入口1306,用于接受对光罩载体的内部容量1307的氮气净化。

双容器euv光罩载体是用于半导体处理的高清洁水平的示例,其中光罩存储在两级容器中以防止污染。此外,两级之间的容量可以充满氮气或用氮气净化,以避免细菌生长,或防止来自外容器的脱气微粒,以粘附到内容器上。内容器中的容量也可以充满氮气或用氮气净化。如图所示,内容器充满氮气,例如,不存在用于氮气净化内容器内部的入口。可替代地,例如可以存在用于内容器的入口,类似于用于外容器的入口1306。

在一些实施例中,本发明公开了用于存储双容器的存储系统,诸如存储空的euv光罩载体和其中存储有光罩的euv光罩载体。存储系统可以将内容器与外容器分开存储,以避免两个容器之间的交叉污染。例如,由于材料的差异,外容器可以具有比内容器更高的脱气率。因此,通过分开存储容器,可以维持光罩的期望清洁水平。

存储系统可以包括两个分开的存储腔室,其仅在容器转移级处连接。例如,每个存储腔室可以用不活泼气体(诸如空气或氮气)净化。湿度传感器可以连接到存储腔室,以将存储腔室维持在恒定的湿度范围。净化后的气体可以用可选的新鲜气体入口进行再循环,例如,以补偿任何气体损失或维持存储腔室中的正压。湿度传感器可以连接到存储腔室或再循环回路。湿度传感器可以连接到另一个新鲜干燥气体源,诸如以控制气体源的流动、以将存储腔室中的湿度水平维持在设定点或湿度范围内。

图13b示出了具有两个分离的存储腔室的堆叠器。堆叠器1380可以包括用于外容器存储的存储腔室1363,和用于内容器存储的存储腔室1362,以及用于基板和容器搬运的部分1370。存储腔室可以用于存储内容器或其中存储有基板的内容器。装载站1377被配置为手动或自动装载和卸载容器。转移站1373可选地被包括,用于容器或工件支撑。机器人1372可以在装载站1377和存储腔室1375和1376之间搬运工件和工件容器。控制器1371包含程序、传感器和操作储料器的命令。

存储腔室可以利用湿度控制进行净化。例如,存储腔室1363可以具有再循环回路1320。新鲜干燥气体源1340可以连接到存储腔室和再循环回路。湿度传感器1330可以连接到再循环回路,并且可以用于控制用于调节气体源1340的阀1350。例如,如果在再循环回路中测量的存储腔室1363中的湿度水平超过上限时,阀1350可以打开,以允许新鲜干燥气体进入存储腔室,从而降低腔室内的湿度。在湿度降低之后,例如,低于下限,阀1350可以关闭。因此,存储腔室1363中的湿度可以被控制在下限和上限之间的范围内。

类似地,存储腔室1362可以具有再循环回路1325。新鲜干燥气体源1345可以连接到存储腔室和再循环回路。湿度传感器1335可以连接到再循环回路,并且可以用于控制用于调节气体源1345的阀1355。例如,如果在再循环回路中测量的存储腔室1362中的湿度水平超过上限时,阀1355可以打开,以允许新鲜干燥气体进入存储腔室,从而降低腔室内的湿度。在湿度降低之后,例如,低于下限,阀1355可以关闭。因此,存储腔室1362中的湿度可以被控制在下限和上限之间的范围内。

两个存储腔室之间的清洁水平可以不同。例如,用于存储内容器的存储腔室1362可以比存储腔室1363更清洁,因为其用于存储基板。

在一些实施例中,储料器可以具有用于存储外容器、内容器和基板(诸如光罩)的三个分离的存储腔室。可替代地,储料器可以具有用于存储外容器和内容器的两个存储腔室,其中内容器具有存储在其中的基板。

图14a-14b图示了根据一些实施例的具有不同的分离的存储腔室构造的堆叠器。在图14a中,堆叠器1480可以包括用于外容器存储的存储腔室1463、用于内容器存储的存储腔室1462、用于基板存储的存储腔室1461以及用于基板和容器搬运的部分1470。装载站1477被配置为手动或自动装载和卸载容器。转移站1473可选地被包括,用于容器或工件支撑。机器人1472可以在装载站1477和存储腔室1475和1476之间搬运工件和工件容器。控制器1471包含程序、传感器和操作堆叠器的命令。

存储腔室可以利用湿度控制进行净化。例如,存储腔室1463/1462/1461可以具有再循环回路1423/1422/1421。新鲜干燥气体源1443/1442/1441可以连接到存储腔室和再循环回路。湿度传感器1433/1432/1431可以连接到再循环回路,并且可以用于控制用于调节气体源1433/1432/1431的阀1453/1452/1451。例如,如果在再循环回路中测量的存储腔室1463/1462/1461中的湿度水平超过上限,那么阀1453/1452/1451可以打开,以允许新鲜干燥气体进入存储腔室,因此降低腔室内的湿度。在湿度降低之后,例如低于下限,阀1453/1452/1451可以关闭。因此,存储腔室1463/1462/1461中的湿度可以被控制在下限和上限之间的范围内。尽管该图示出了用于存储腔室的类似构造,但是例如,取决于期望清洁水平,可以有附加的特征或对腔室的修改。例如,可以将净化的隔间添加到容纳内容器或基板的存储腔室中,因为这些部件需要更高的清洁程度。另外,容器在封闭构造中示出,但也可以使用其它构造,诸如开放构造,例如容器的上盖和底部支撑件可以是分开的,以允许净化容器的内部。可替代地,封闭容器可以将净化气体供给到内部,例如通过容器底部支撑件中的净化端口。

在图14b中,堆叠器1481可以包括用于外容器存储的存储腔室1466、用于内容器存储的存储腔室1465以及用于基板和容器搬运的部分1470。存储腔室可以用来存储其中存储有基板的内容器。装载站1477被配置为手动或自动装载和卸载容器。转移站1473可选地被包括,用于容器或工件支撑。机器人1472可以在装载站1477与存储腔室1475和1476之间搬运工件和工件容器。控制器1471包含程序、传感器和操作储料器的命令。

存储腔室可以通过湿度控制进行净化。例如,存储腔室可以具有再循环回路。新鲜干燥气体源可以连接到存储腔室和再循环回路。湿度传感器可以连接到再循环回路,并且可以用来控制用于调节气体源的阀。例如,如果在再循环回路中测量的存储腔室中的湿度水平超过上限,那么阀可以打开以允许新鲜干燥气体进入存储腔室,因此降低腔室中的湿度。例如,当湿度降低到下限以下时,阀可以关闭。因此可以将存储腔室内的湿度控制在下限和上限之间的范围内。尽管该图显示了用于存储腔室的类似构造,但是例如,取决于期望清洁水平,可以有附加的特征或对腔室的修改。

图15a-15b图示了根据一些实施例的用于存储双容器的流程图。在图15a中,操作1500提供双容器,其中双容器包括封住内容器的外容器,其中内容器和外容器包括不同材料。操作1510将内容器和外容器存储在不同的存储腔室中。

在图15b中,操作1530提供双容器,其中双容器包括封住内容器的外容器。

操作1540将内容器和外容器存储在不同的存储腔室中。操作1550用气流净化不同的存储腔室,直到湿度水平达到设定点。

在一些实施例中,本发明公开了具有用于存储内容器(具有或不具有存储在内容器中的基板)的存储腔室和用于存储外容器的缓冲存储组件的储料器。缓冲存储组件可以具有典型的清洁度,例如用于存储基于聚合物的外容器。存储腔室可以修改以改善清洁,例如用于存储基于金属的内容器。

储料器可以与2011年9月5日提交的申请号为13/225,547(dms034)的图1中描述的储料器类似,该申请通过引用整体上并入本文。

在一些实施例中,缓冲存储组件可以包括存储腔室和与存储腔室接口的机器人系统。机器人系统还可以访问装载锁定站(例如装载站或卸载站)或装备的任何中间站(诸如转移站或交换站),以在存储腔室与装备的站之间转移物体。例如,缓冲存储组件可以安装在装备附近,在装备的一侧并靠近装备的装载锁定站。机器人手臂可以被配置为伸进装载锁定站,从装载锁定站拾取容器以将其带到存储腔室,或者将从存储腔室取出的容器放置到装载锁定站。

图16a-16c图示了根据一些实施例的具有缓冲存储组件的储料器的构造。在图16a中,外容器附加存储装置1611连接到具有装载站1613的内容器储料器1612。术语装载站在本发明的上下文中用作支撑容器的站,例如手动i/o站(例如,由操作员从储料器1612装载和卸载容器的站)、自动i/o站(例如,通过自动架空运输系统从储料器1612装载和卸载容器的站),或储料器1612内的中间站或接口站,用于支撑作为i/o站与储料器系统之间的过渡站的容器。例如,外容器可以被装载到i/o站(手动或自动),然后被转移到中间站,在那里外容器打开,机器人可以进入内容器中。

在一些实施例中,储料器1612是能够独立操作的独立储料器,其具有用于与制造设施中的其它装备接口的手动或自动i/o站。储料器接受其中存储有基板的内容器。外容器附加存储装置1611可以固定在储料器的一侧上,充当储料器的外部存储装置。外容器附加件1611和储料器1612之间的连接可以包括将外容器附加存储装置1611的机器人手臂与储料器1612的装载站1613配合,使得外容器附加存储装置1611可以访问装载站1613中的容器,例如拾取装载站1613中的容器以存储在容器附加组件1611的存储腔室中,或者将容器从外容器附加组件1611的存储腔室放到装载站1613。

在示例性处理流中,将容器带到工件堆叠器1612,并且将容器内的内容器移除并存储在堆叠器1612中。外容器附加存储装置的机器人然后拾取外容器并将它存储在外容器附加存储装置1611的外容器存储腔室中。

图16b和16c分别示出了附加存储装置1611的顶视图和前视图,该附加存储装置1611固定到堆叠器1612。堆叠器1612可以包括用于接受容器的手动i/o站1613、存储腔室1616和机器人1618,以在i/o站1613和存储腔室1616之间转移容器。可以包括附加的站,诸如用于与自动架空运输系统连接的自动架空i/o站1619,以及可以用作容器的接口站的中间站1613a。例如,i/o站1613中的容器可以被带到接口站1613a,在那里它的盖子可以打开,并且内容器可以被机器人1618访问。

外容器附加存储组件1611可以包括机器人组件1615和用于存储外容器的多个货架1614。机器人组件1615被配置为访问货架1614中的外容器以及堆叠器1612的装载站1613和1613a。附加存储组件1611还可以包括用于控制其操作的控制器1617a。控制器1617a可以具有与堆叠器1612的控制器1617b相似的功能。控制器1617a可以与控制器1617b通信以获取信息,或者可以与设施计算机通信。

存储腔室可以用于存储空的内容器或其中具有基板的内容器。可替代地,存储腔室可以用于分开存储内容器和基板,例如通过具有两个分离的存储腔室。

图17a-17b图示了根据一些实施例的用于存储双容器的流程图。在图17a中,操作1700提供双容器,其中双容器包括封住内容器的外容器,其中内容器和外容器包括不同材料。操作1710将内容器存储在堆叠器的净化的存储腔室中。操作1720将外容器存储在堆叠器旁边的缓冲存储腔室中。

在图17b中,操作1740提供双容器,其中双容器包括封住内容器的外容器。

操作1750将内容器存储在储料器的净化的存储腔室中,其中净化的存储腔室包括具有恒定湿度范围的气流。操作1760将外容器存储在储料器旁边的缓冲存储腔室中。

在一些实施例中,内容器可以存储在保护性容器中,保护性容器存储在存储腔室中。净化气体可以在存储腔室中被提供,以防止存储在其中的保护性容器的污染。可以在保护性容器中提供另一种净化气体,以防止存储在其中的内容器的污染。任一种净化气体或两者都可以被再循环。湿度传感器可以用于调节存储腔室或保护性容器中的湿度水平。

图18图示了根据一些实施例的具有湿度控制的储料器构造。储料器1800可以包括用于存储外容器1880的存储腔室1801。可以在存储腔室1801中提供层流净化流1820,以便为外容器1880提供清洁环境。净化流1820可以被再循环,过滤器1870部署在再循环路径中,以降低再循环的净化流中的湿气含量。在一些实施例中,可以将可选的气流1821添加到再循环路径,例如,以补偿再循环路径中的任何气体损失,和/或维持存储腔室1801中的正压(例如,高于大气压)。湿度传感器1810可以连接到存储腔室1801,以测量存储腔室中的湿度。可替代地,可以将湿度连接到再循环路径上的任何位置,以测量再循环气体中的湿度。湿度传感器1810可以用于控制新鲜干燥气体1830,以调节存储腔室中的湿度水平。例如,如果湿度超过上水平,那么新鲜干燥气体1830可以开始,直到湿度下降到低于下湿度水平。

储料器1800还可以包括用于存储保护性容器1846的存储腔室1806。多个半导体内容器1885可以存储在保护性容器1846中。内容器可以存储在存储隔间1886中。层流净化流1825可以在存储腔室1806中提供,以便为保护性容器1846提供清洁环境。净化流1825可以被再循环,其中湿气过滤器1875部署在再循环路径中,以降低再循环的净化流中的湿气含量。在一些实施例中,可以将可选的气流1826添加到再循环路径中,例如,以补偿再循环路径中的任何气体损失,和/或维持存储腔室1806中的正压(例如,高于大气压)。湿度传感器1815可以连接到存储腔室1806,以测量存储腔室中的湿度。可替代地,可以将湿度连接到再循环路径上的任何位置,以测量再循环气体中的湿度。湿度传感器1815可以用于控制新鲜干燥气体1835,以调节存储腔室中的湿度水平。例如,如果湿度超过上水平,那么新鲜干燥气体1835可以开始,直到湿度下降到低于下湿度水平。

净化气体1845可以用于为保护性容器1846提供清洁环境。净化气体1845可以流过内容器1885(和隔间1886),然后再循环回到保护性容器1846,其中湿气过滤器1876部署在再循环路径中,以降低再循环的净化流中的湿气含量。湿度传感器1816可以连接到再循环路径上的位置,以测量再循环气体中的湿度。湿度传感器1816可以用于控制净化气体1845的流量,以调节保护性容器中的湿度水平。例如,净化气体1845具有正常流率。如果湿度超过上水平,那么净化气体1845可以增加到超过正常流率,直到湿度下降到低于下湿度水平。之后,净化气体1845可以返回到正常流率。该处理可以重复进行,这可以将保护性容器内部的湿度控制在下水平和上水平之间。

可替代地,净化气体1845可以与存储腔室1806的流1825融合。

如图所示,内容器在没有基板的情况下被存储。在一些实施例中,内容器可以与存储在其中的基板一起存储。

如图所示,内容器被存储在存储隔间1886中。在一些实施例中,内容器可以被裸露存储,例如,不放置在存储隔间中。

图19图示了根据一些实施例的具有湿度控制的储料器构造。储料器1900可以包括用于存储外容器1980的存储腔室1901和用于存储内容器1985的存储腔室1906。可以为存储腔室1901和1905提供层流净化流1920,以便为内容器和外容器1980提供清洁环境。净化流1920可以被再循环,其中湿气过滤器1970部署在再循环路径中,以降低再循环的净化流中的湿气含量。在一些实施例中,可以将可选的气流1921添加到再循环路径中,例如,以补偿再循环路径中的任何气体损失,和/或维持存储腔室1901中的正压(例如,高于大气压)。湿度传感器1910可以连接到存储腔室1901,以测量存储腔室中的湿度。可替代地,可以将湿度连接到再循环路径上的任何位置,以测量再循环气体中的湿度。湿度传感器1910可以用于控制新鲜干燥气体1930,以调节存储腔室中的湿度水平。例如,如果湿度超过上水平,那么新鲜干燥气体1930可以开始,直到湿度下降到低于下湿度水平。

存储腔室1906可以包括用于存储内容器(具有或不具有基板)的保护性容器1946。净化气体1945可以用于为保护性容器1946提供清洁环境。净化气体1945可以流过内容器1985,然后再循环回到保护性容器1946,湿气过滤器1976部署在再循环路径中,以降低再循环的净化流中的湿气含量。湿度传感器1916可以连接到再循环路径上的位置,以测量再循环气体中的湿度。湿度传感器1916可以用于控制净化气体1945的流量,以调节保护性容器中的湿度水平。例如,净化气体1945具有正常流率。如果湿度超过上水平,那么净化气体1945可以增加到正常流率以上,直到湿度下降到低于下湿度水平。之后,净化气体1945可以返回到正常流率。该处理可以重复进行,这可以将保护性容器内部的湿度控制在下水平和上水平之间。

可替代地,净化气体1945可以与存储腔室1906的流1920融合。

如图所示,内容器与基板一起存储。在一些实施例中,内容器可以被存储,而基板不存储在其中。

如图所示,内容器是裸露存储的,例如,不被放置在存储隔间中。在一些实施例中,内容器可以存储在存储隔间中。

图20a-20b图示了根据一些实施例的用于调节储料器的流程图。在图20a中,操作2000提供双容器,其中双容器包括封住内容器的外容器,其中内容器和外容器包括不同材料。操作2010将内容器存储在第一净化的隔间中。操作2020将第一净化的隔间存储在具有可选湿度控制的第一存储腔室中的第二个净化的隔间中。操作2030将外容器存储在具有可选湿度控制的第二净化的存储腔室中。

在图20b中,操作2050提供双容器,其中双容器包括封住内容器的外容器。

操作2030将内容器存储在具有可选湿度控制的第一存储腔室中的净化的隔间中。操作2060将外容器存储在具有可选湿度控制的第二净化的存储腔室中。

在一些实施例中,本发明公开了用于搬运内容器的净化隔间,诸如用于光罩存储的euv内晶盒。净化隔间可以包括用于接受净化气体的入口,其允许存储的内容器处于清洁环境中。另外,净化隔间可以隔离内容器,因此可以防止例如来自外容器的交叉污染。净化隔间可以存储内容器(例如,euv内晶盒),并且可以用作内容器的运输载体。净化隔间可以由具有低脱气特性的材料制成,诸如金属或合金。由于euv双容器的内晶盒通常由金属制成,因此与euv双容器的基于聚合物的外晶盒相比,金属净化隔间可以提供更清洁的环境。

图21a-21c图示了根据一些实施例的净化隔间的构造。在图21a中,净化隔间2100可以用于保持空的内容器2110(例如,euv双容器的其中未存储光罩的内晶盒)。净化隔间可以具有用于接受净化气体(诸如氮气或空气)的入口2130。为了存储,净化隔间可以被持续净化。净化操作可以利用新鲜干燥气体,或者可以利用再循环气体。例如,再循环气体可以具有湿度反馈,以将湿度水平调节到低于设定点(诸如低于10%或5%)或在湿度范围之间(诸如5%和10%之间)。湿度反馈可以包括湿度传感器,从而控制新鲜干燥气体源,使得当湿度水平超过设定点时可以供给新鲜干燥气流。

为了运输,净化隔间可以从被净化的位置移开,然后转移到新位置(诸如用净化的气体重新净化隔间内的位置)。净化隔间内净化的环境例如可以在一段时间例如在运输时间内防止内容器2110的污染。

内容器可以在净化隔间中封闭存储或开放存储。对于存储的封闭构造,内容器的内部也可以被净化。例如,内容器可以具有用于接受净化气体的入口。净化隔间的净化的环境可以处于高于大气压的压力下,因此净化气体可以例如通过内容器的入口进入内隔间的内部。内容器的入口可以被定位成使得进入净化隔间的入口的净化的气体的一部分可以进入内容器。净化隔间可以具有管道组件2140,以将净化气体的一部分引导至内容器的入口。

在图21b中,净化隔间2101可以用于保持内容器2111(诸如euv双容器的内晶盒,其中存储有光罩2121)。净化隔间可以具有用于接受净化气体(诸如氮气或空气)的入口2131。净化隔间2101的操作、构造和使用可以类似于净化隔间2100。

在图21c中,净化隔间2102可以用于保持内容器2112(诸如euv双容器的内晶盒,其中存储有光罩2122)。净化隔间可以靠近外部环境,例如,净化隔间可以填充净化气体,然后密封,例如用于运输。

在实施例中,净化隔间可以存储在具有净化气体系统的堆叠器的存储腔室中,以保持所存储物体的内部容量(诸如euv双容器的内晶盒)的清洁。净化气体系统可以将氮气(或其它不活泼气体)输送到物体的内部,从而有效地替换内部环境,恢复清洁水平,并可以消除或降低微粒脱气。例如,在存储期间,净化隔间与双容器euv光罩载体的内容器之间的容量被持续地(或间歇地)用氮气净化。另外,通过用清洁隔间(其可以由金属制成,以降低脱气)替换euv双容器的基于聚合物的外容器,内容器的环境可以更清洁。

在实施例中,存储腔室可以用层流净化,以保持存储清洁,从而防止或减少任何污染物粘附到载体的外部。例如,清洁的气体(诸如过滤后的压缩空气)可以从顶部或从侧部引入存储腔室,以降低或消除交叉污染。

在实施例中,净化气体可以被再循环,从而除去来自外部环境的任何污染的机会。再循环气体可以包括惰性气体(诸如氮气),或者不活泼气体(诸如空气)。再循环气体可以被过滤以去除微粒,并且可以被冷却以减少热运动。因此,存储腔室的内部环境与外部环境隔离,从而允许适用于所存储物体的清洁水平。如上所述,湿度反馈可以用于降低存储腔室中的湿度水平。

图22图示了根据一些实施例的包括多个净化隔间的存储腔室。存储腔室可以类似于申请号为13/537,009(dms033a)的图7中描述的存储腔室,该申请通过引用而整体地并入本文。

中央气体管线2274将净化气体输送到净化隔间。在一些实施例中,净化气体持续地输送2273a/2273b净化气体,而没有任何主动计量或控制阀。净化气体流可以在制造期间预先确定,并且可以具有用于对于所有隔间相同或对于不同隔间不同的手动调节的可选的计量阀,但是可以不存在主动或反馈控制机构。净化气体可以流过固定量的气体,而不管物体是否位于那个隔间中。在另一个实施例中,可以主动控制净化气体,例如以减少没有任何存储物体的隔间的净化气体的损失。如上所述,湿度反馈可用于降低净化的气体路径中的湿度水平。

净化气体可以将清洁的气体(诸如氮气)输送到所存储物体的内部容量(诸如净化隔间2272a与双容器光罩载体的内容器2272b之间的容量)。层流(来自外部环境或来自再循环的环境)可以被输送到存储隔间,或者从顶部2271a(或从底部,未示出)以用于所有隔间,或者从侧部2271b以用于个别隔间。

内容器可以在净化隔间中封闭存储或开放存储。对于存储的封闭构造,内容器的内部也可以被净化。例如,内容器可以具有用于接受净化气体的入口。净化隔间的净化的环境可以处于高于大气压的压力下,因此净化气体可以例如通过内容器的入口进入内隔间的内部。内容器的入口可以被定位成使得进入净化隔间的入口的净化的气体的一部分可以进入内容器。净化隔间可以具有导管组件,以将净化气体的一部分引导至内容器的入口。

内容器可以在有或没有基板(例如,euv光罩)的情况下存储。例如,可以在高真空腔室内周期性地对内容器和内部的光罩进行去污。例如,去污高真空腔室可以位于储料器中,以避免内容器和光罩暴露于非清洁的环境。

净化隔间可以与内容器和光罩一起被去污。例如,与内容器和光罩一起,净化隔间可以被转移到去污腔室,进行去污。可替代地,净化隔间可以打开,并且内容器和光罩被转移到去污腔室进行去污。在去污之后,将内容器和光罩放回净化隔间进行存储。

图23a-23b图示了根据一些实施例的用于净化隔间存储的流程图。在图23a中,操作2300将双容器的内容器存储在净化的隔间中,其中双容器包括封住内容器的外容器,其中内容器和外容器包括不同材料。操作2310断开净化气体。操作2320运输内容器。

在图23b中,操作2340将双容器的内容器存储在隔间中,其中双容器包括封住内容器的外容器,其中内容器和外容器包括不同材料。操作2350净化隔间。操作2360存储内容器。

在一些实施例中,本发明公开了具有去污腔室的储料器,该去污腔室用于周期性对基板(诸如euv光罩)进行去污。光罩可以存储在内容器中,内容器存储在净化隔间中,并且净化隔间存储在第一存储腔室中。外容器可以分离地存储在第二存储腔室中。可以包括去污腔室(诸如高真空腔室),以周期性地对光罩进行去污,可选地与内容器并且可选地与净化隔间一起去污。

图24a-24b图示了根据一些实施例的储料器。在图23a中,储料器2480可以包括用于外容器存储的存储腔室2463、用于可以存储在净化隔间中的内容器存储的存储腔室2462、用于去污的高真空腔室2461,以及用于基板和容器搬运的部分2470。装载站2477被配置为用于手动或自动装载和卸载容器。转移站2473可选地被包括,用于容器或工件支撑。机器人2472可以在装载站2477和存储腔室2475和2476之间搬运工件和工件容器。控制器2471包含程序、传感器和操作储料器的命令。

存储腔室可以利用湿度控制进行净化。例如,存储腔室2463/2462可以具有再循环回路2423/2422。新鲜干燥气体源2443/2442可以连接到存储腔室和再循环回路。湿度传感器2433/2432可以连接到再循环回路,并且可以用于控制用于调节气体源2433/2432的阀2453/2452。例如,如果在再循环回路中测量的存储腔室2463/2462中的湿度水平超过上限,那么阀2453/2452可以打开,以允许新鲜干燥气体进入存储腔室,因此降低腔室内的湿度。在湿度降低之后,例如低于下限,阀2453/2452可以关闭。因此,存储腔室2463/2462中的湿度可以被控制在下限和上限之间的范围内。

外容器2403可以存储在存储腔室2463中。内容器2402连同光罩2401可以存储在净化隔间2404中。净化隔间2407连同内容器和光罩一起可以存储在存储腔室2462中。净化的气体2408可以被提供到净化隔间2407的内部,类似于上述构造。

例如,在存储一段时间之后,去污腔室2461可以用于对光罩周期性地去污。去污处理可以包括内容器以及在内容器打开情况下的光罩,例如顶盖与底部支撑件分离,以暴露光罩。可替代地,去污处理可以包括内容器以及在内容器闭合情况下的光罩,例如,光罩被密封在内容器内。净化气体可以提供给内容器的内部以进行去污。

可替代地,去污处理可包括净化隔间和具有或不具有光罩的内容器。

在图23b中,堆叠器2481可以包括用于外容器存储的存储腔室2468、用于可以存储在保护性隔间中的内容器存储的存储腔室2467、用于去污的高真空腔室2466,以及用于基板和容器搬运的部分。

存储腔室可以利用湿度控制进行净化。内容器与光罩一起可以存储在保护性隔间中,其可以存储在存储腔室2467中。与上述构造类似,可以向保护性隔间的内部提供净化的气体2409。

例如,在存储一段时间之后,去污腔室2461可以用于周期性对光罩进行去污。去污处理可以包括内容器和在内容器闭合的情况下的光罩,例如,光罩被密封在内容器内部。净化气体可以提供给内容器的内部以进行去污。

图25图示了根据一些实施例的用于存储光罩的流程图。操作2500将基板存储在净化的隔间中的双容器的内容器中,其中双容器包括封住内容器的外容器,其中内容器和外容器包括不同材料。操作2510周期性地将基板和内容器转移到去污腔室。操作2520对基板和内容器进行去污。操作2530将基板和内容器返回到净化的隔间。

权利要求书(按照条约第19条的修改)

1.一种用于形成具有低湿度水平(115)的用于半导体基板(380)的清洁环境(100)的方法,包括步骤:

使用湿度传感器(110)测量环境(100)中的湿度水平(115),以将环境(100)保持在湿度设定点(140)附近的预定区间内或湿度设定点(140)处;以及

向环境(100)提供气体(120),直到湿度水平(115)降低到设定点(140)附近的预定区间内的值或设定点(140);其中利用低湿度气体净化第一环境,直到第一环境中的湿度降低到设定点附近的预定区间内的值或设定点,并且其中在第一环境中形成的第二环境利用第二净化气体净化。

2.如权利要求1所述的方法,其中环境(100)中的气体(120,130)被再循环。

3.如权利要求2所述的方法,其中借助于连接到再循环的气流(120,130)的湿度降低组件(160)降低返回气流(120)中的湿度水平(115)。

4.如前述权利要求中任一项所述的方法,其中当湿度水平(115)超过预定阈值时,添加新鲜干燥气体(170)。

5.如前述权利要求中任一项所述的方法,其中,从以下之一测量湿度水平(115):

环境中的气体或

所提供的气体的排气中的气体(130)或

压力降低的速率。

6.如前述权利要求中任一项所述的方法,其中环境(100)在用于存储半导体基板(380)以供运输的容器(300)内形成,或者其中环境(100)在用于存储半导体基板以供运输或用于存储容器(480)的腔室(400)内形成。

7.如前述权利要求中任一项所述的方法,其中环境(100)在用于处理容器(480)的腔室(400)内形成,包括步骤:

在腔室(400;200)内提供容器(480),特别地放置或放入容器(480),

清洁容器(480)以移除表面污染物(200);

通过抽空腔室(400)并向腔室(400;210)供给净化气体,从腔室(400)的内部除去湿气,直到湿度水平(115)达到设定点(140)附近的预定区间内的值或设定点(400)。

8.如权利要求7所述的方法,其中腔室(400)中的低湿度条件被维持预定的时间段(220)。

9.如前述权利要求中任一项所述的方法,其中环境(100)在用于存储半导体基板(380)的容器(300)内形成,包括步骤:

清洁容器和/或干燥容器(300;240),

用气流净化容器(300)的内部,直到湿度水平(115)达到设定点(140)附近的预定区间内的值或设定点(140;250)。

10.如权利要求1所述的方法,其中第一环境在用于存储容器(1041)的储料器(1000)内形成,并且其中第二环境在用于存储半导体基板(1080)的容器(1041)内形成。

11.一种用于形成具有低湿度水平(115)的用于半导体基板的清洁环境(100)的系统,包括:

适于测量环境(100)中的湿度水平(115)以将环境保持在湿度设定点(140)附近的预定区间内或湿度设定点(140)处的湿度传感器(110),以及

适于向环境(100)提供气体(120)直到湿度水平(115)降低到设定点(140)附近的预定区间内的值或设定点(140)的机构;其中所述系统进一步适于通过适于利用低湿度气体净化的构件在用于存储容器(1041)的储料器(1000)内形成第一环境直到第一环境中的湿度降低到设定点(140)附近的预定区间内的值或设定点(140),并且适于通过适于利用第二净化气体净化的构件在用于存储半导体基板(1080)的容器(1041)内形成第二环境。

12.如权利要求11所述的系统,适于在用于存储半导体基板(380)以供运输的容器(300)内形成环境(100)或者在用于存储半导体基板以供运输或用于存储容器(480)的腔室(400)内形成环境(100)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1