包括CIGS光吸收层的太阳能电池及其制造方法与流程

文档序号:15457105发布日期:2018-09-15 01:21阅读:243来源:国知局
本发明涉及一种包括CIGS光吸收层的太阳能电池及其制造方法。
背景技术
:近年来,作为根据环境法规减少碳排放量的新型可再生能源的开发的一个环节,由于能够将太阳能转换为电能而设置地点的限制很少并且可容易地产生电力的太阳能电池正受到关注。这种太阳能电池使用单晶硅或多晶硅晶片来制造,但由于单晶硅具有最高的光电转换效率,因此单晶硅通常被广泛使用在大规模发电系统领域等。然而,这种单晶硅由于制造工艺复杂且价格昂贵而不经济。因此,尽管效率相对较低,但开发了通过使用低等级硅晶片的多晶硅的太阳能电池的制造方法,并且该方法目前用于住宅用发电系统等中。然而,上述过程也很复杂,并且由于硅价格导致原材料价格上涨而对降低太阳能电池的制造成本有局限性。因此,最近,作为克服上述问题的薄膜太阳能电池,开发了使用具有多结结构的非晶硅的方法和使用硫属化物基化合物等化合物半导体的方法。其中,作为CIGS光吸收层使用作为硫属化物系化合物的Cu(In1-xGax)Se2(以下称为CIGS)制造的太阳能电池被评价为高效且低成本的候选。技术实现要素:发明要解决的问题本发明提供一种太阳能电池的制造方法,其特征在于,包括:步骤(a)、在基板上形成下电极层;步骤(b)、在所述下电极层上供给铜前体以通过使用化学气相沉积法沉积铜薄膜,然后供给镓前体、铟前体及第一硒前体以通过使用化学气相沉积法沉积镓薄膜和铟-硒薄膜来形成CIGS光吸收层;以及步骤(c)、在所述CIGS光吸收层上顺次形成缓冲层和前电极层。然而,本发明不限于上述目的,而是,本领域技术人员根据以下描述可以意识到其它的目的。用于解决问题的方案本发明提供一种太阳能电池的制造方法,其特征在于,包括:步骤(a)、在基板上形成下电极层;步骤(b)、在所述下电极层上供给铜前体以通过使用化学气相沉积法沉积铜薄膜,然后供给镓前体、铟前体及第一硒前体以通过使用化学气相沉积法沉积镓薄膜和铟-硒薄膜来形成CIGS光吸收层;以及步骤(c)、在所述CIGS光吸收层上顺次形成缓冲层和前电极层。在所述步骤(b)中,可以依次供给镓前体、铟前体及第一硒前体,使得先沉积镓薄膜,然后沉积铟-硒薄膜。在所述步骤(b)中,可以向镓前体同时供给第二硒前体以沉积镓-硒薄膜。在所述步骤(b)中,所述镓前体可以包括选自由三甲基镓、三乙基镓、三异丙基镓、三丁基镓、三叔丁基镓、三甲氧基镓、三乙氧基镓、三异丙氧基镓、二甲基异丙氧基镓、二乙基异丙氧基镓、二甲基乙基镓、二乙基甲基镓、二甲基异丙基镓、二乙基异丙基镓及二甲基叔丁基镓组成的组中的至少一种。在所述步骤(b)中,可以在将罐温度保持为-40~100℃且将进料线温度保持为25~200℃的状态下供给所述镓前体。在所述步骤(b)中,第二硒前体可以包括选自由二甲基硒化物、二乙基硒化物、二异丙基硒化物、二叔丁基硒化物、二甲基二硒化物、二乙基二硒化物、二异丙基二硒化物、二叔丁基二硒化物、叔丁基异丙基硒化物及叔丁基硒醇组成的组中的至少一种。所述步骤(b)还可包括热处理步骤。所述热处理可以在200~600℃的温度下进行1~50分钟。本发明的一实施例提供一种太阳能电池,其特征在于,包括在基板上顺次形成的下电极层、CIGS光吸收层、缓冲层及前电极层,其中,在与所述下电极层接触的所述CIGS光吸收层的下表面区域中发生硒缺陷。在所述下电极层和所述CIGS光吸收层之间形成的MoSex层的厚度可以为10nm或更小。在与所述缓冲层接触的所述CIGS光吸收层的上表面区域中可以发生铜缺陷。所述CIGS光吸收层的带隙能量可以为1.2~1.8eV。发明的效果根据本发明的太阳能电池的特征在于,在所述下电极层上供给铜前体以使用化学气相沉积法沉积铜薄膜,然后供给镓前体、铟前体和第一硒前体以使用化学气相沉积法沉积镓薄膜和铟-硒薄膜,从而形成具有低孔隙率和大平均晶粒尺寸的CIGS光吸收层,因此不仅可以使MoSex层的形成最小化,而且还可以提高太阳能电池的性能。附图说明图1示出根据本发明实施例的包括CIGS光吸收层的太阳能电池的制造方法。图2示出根据本发明实施例的包括CIGS光吸收层的太阳能电池。图3示出根据螺旋电子能谱(AES)法的在CIGS光吸收层中沿厚度方向的各元素的组成比的变化。图4为根据实施例1的太阳能电池的CIGS光吸收层的顶表面和截面的扫描电子显微镜(SEM)照片。图5为评价实施例1~4和比较例1~4的太阳能电池的开路电压的图表。具体实施方式下文中,将参考附图详细描述本发明的实施例,以使得本发明所属领域的技术人员可容易实现本发明。然而,应该注意的是,本发明并不限于在此说明的实施例而是能够以各种其他方式实现。为了明确说明本发明而省略了与说明无关的部分,在说明书全文中,对于相同或类似的结构要素,标注了相同的附图标记。在附图中,为了清楚表达各层和区域而放大了厚度。另外,为了方便说明,某些层和区域的厚度被夸大。以下,在基材的“上部(或下部)”或者基材的“上(或下)”形成任意的结构不仅意味着任意的结构与上述基材的上表面(或下表面)相接触而成,而且并不限定上述基材与形成于基材上(或下)的任意结构之间不包括其他结构。下面将详细说明本发明。本发明提供一种太阳能电池的制造方法,其特征在于,包括:步骤(a)、在基板上形成下电极层;步骤(b)、在所述下电极层上供给铜前体以通过使用化学气相沉积法沉积铜薄膜,然后供给镓前体、铟前体及第一硒前体以通过使用化学气相沉积法沉积镓薄膜和铟-硒薄膜来形成CIGS光吸收层;以及步骤(c)、在所述CIGS光吸收层上顺次形成缓冲层和前电极层。图1示出根据本发明实施例的包括CIGS光吸收层的太阳能电池的制造方法。如图1所示,为了制造根据本发明的一实施例的包括CIGS光吸收层30的太阳能电池1,首先,在基板10上形成下电极层20。之后,在所述下电极层20上供给铜前体以通过使用化学气相沉积法沉积铜薄膜31,然后供给镓前体、铟前体及第一硒前体以通过使用化学气相沉积法沉积镓薄膜32和铟-硒薄膜33来形成CIGS光吸收层30。然后,在CIGS光吸收层30上依次形成缓冲层40和前电极层50。并且,本发明提供一种太阳能电池,其特征在于,包括在基板上顺序形成的下电极层、CIGS光吸收层、缓冲层及前电极层,其中,在与所述下电极层接触的所述CIGS光吸收层的下部区域中发生硒缺陷。图2示出根据本发明实施例的包括CIGS光吸收层的太阳能电池。如图2所示,根据本发明的一实施例的包括CIGS光吸收层30的太阳能电池1的特征在于,包括在基板10上顺序形成的下电极层20、CIGS光吸收层30、缓冲层40及前电极层50,其中,在与所述下电极层20接触的所述CIGS光吸收层30的下部区域中发生硒缺陷。基板10的形成所述基板10可以是玻璃基板、陶瓷基板、金属基板、聚合物基板等。例如,玻璃基板可以是钠钙玻璃基板或高应变点钠玻璃基板,金属基板可以是包括不锈钢或钛的基板,并且聚合物基板可以是聚酰亚胺基板。所述基板10可以透明。所述基板10可以刚性或柔性。下电极层20的形成所述下电极层20形成在所述基板10上,并且可以包括如Mo等金属作为导电层。所述下电极层20可以是单层或者可以由两层以上的多层形成。当所述下电极层20由两层以上的多层形成时,各层可以由相同的金属形成,或者可以由不同的金属形成。所述下电极层20的形成可以通过选自由溅射、同时蒸发法、化学气相沉积法、原子层沉积法、离子束沉积法、丝网印刷、喷涂浸涂、流延成型和喷绘组成的组中的至少一种公知方法来实现。所述下电极层20的厚度优选为0.1~1μm,更优选为0.4~0.6μm,但不限于此。CIGS光吸收层30的形成所述CIGS光吸收层30形成在所述下电极层20上,并且通过在所述下电极层20上供给铜前体以使用化学气相沉积法沉积铜薄膜31,然后供给镓前体、铟前体及第一硒前体以使用化学气相沉积法沉积镓薄膜32和铟-硒薄膜33来形成。化学气相沉积(CVD)是半导体制造工艺中的一个步骤,且是指通过向金属前体施加等离子体和热来形成金属薄膜。当使用化学气相沉积法来形成CIGS光吸收层30时,存在由于使用蒸发材料而具有高效率,容易形成大尺寸,简单的装置结构,可实现低廉的系统价格等优点。另一方面,在使用化学气相沉积法的情况下,需要确保适合于所需工艺的最佳前体,并且需要如在处理温度、压力等方面设定最佳条件。为了进行化学气相沉积,需要设置化学气相沉积设备。化学气相沉积设备包括:腔室,用于将内部保持在真空状态;门,设置在所述腔室的一侧,用于将基板10引入到腔室内部;基板卡盘(加热块和基座),设置在所述腔室的下部,用于安装基板10并将基板10加热到所需工艺温度;以及喷头,设置在所述腔室上方,用于供给工艺气体。此外,所述喷头连接到布置在外部的多个罐,并且可以从各个罐接收工艺气体(金属前体等)。基板10通过所述门被引入到所述腔室内部并被固定在所述基板卡盘。在基板10被引入到所述腔室内部之后,所述门被密封并且所述腔室的压力降低,其中,腔室内部压力优选为0.01毫mtorr至大气压。首先,在所述下电极层20上供给铜前体以通过化学气相沉积法沉积铜薄膜31。由于所述铜薄膜31的沉积,可以防止包含Mo的下电极层20的表面和硒前体之间的直接接触,从而可以使MoSex层的形成最小化。并且,即使当对铜薄膜31、镓薄膜(或镓硒薄膜)32和铟-硒薄膜33进行充分的热处理以形成散装状态的CIGS光吸收层30时,也由于沉积所述铜薄膜31而在与所述下电极层接触的所述CIGS光吸收层30的下表面区域发生硒缺陷,从而可以使MoSex层的形成最小化。具体而言,所述铜前体优选为选自由双(乙酰丙酮)铜、双(2,2,6,6-四甲基庚二酮)铜、双(六氟乙酰丙酮)铜、(乙烯基三甲基甲硅烷基)(六氟乙酰丙酮)铜、(乙烯基三甲基甲硅烷基)(乙酰丙酮)铜、(乙烯基三甲基甲硅烷基)(2,2,6,6-四甲基庚二酸根合)铜、(乙烯基三乙基甲硅烷基)-(乙酰丙酮根合)铜、(乙烯基三乙基甲硅烷基)-(2,2,6,6-四甲基庚二酮)铜及(乙烯基三乙基甲硅烷基)-(六氟乙酰丙酮)铜组成的组中的一种或多种,但不限于此。其中,考虑到铜前体的蒸气压来确定用于供给所述铜前体的罐温度。优选地,在将罐温度保持为-40~100℃,优选为25~80℃,将进料线温度保持为25~200℃的状态下供给所述铜前体,但本发明不限于此。当供给所述铜前体时,优选将所述基板10的温度保持为25~600℃,并且优选使用选自由氩气、氦气及氮气组成的组中的一种或多种气体作为载气。所述铜薄膜31的沉积厚度优选为50~1000nm,但不限于此。其中,当铜薄膜31的沉积厚度超出上述范围时,难以实现CIGS光吸收层30的理想带隙能量。其次,供给镓前体、铟前体及第一硒前体以通过化学气相沉积法来沉积镓薄膜32和铟-硒薄膜33。尤其,由于所述镓薄膜32的沉积,CIGS光吸收层的带隙能量可以被适当地调节为1.2~1.8eV,优选为1.3~1.5eV,因此可以提高太阳能电池1的性能。其中,依次供给镓前体、铟前体和第一硒前体来先沉积镓薄膜32,然后沉积铟-硒薄膜33,从而具有太阳能电池1的性能可以进一步得到提高的优点。具体而言,所述镓前体优选包括选自由三甲基镓、三乙基镓、三异丙基镓、三丁基镓、三叔丁基镓、三甲氧基镓、三乙氧基镓、三异丙氧基镓、二甲基异丙氧基镓、二乙基异丙氧基镓、二甲基乙基镓、二乙基甲基镓、二甲基异丙基镓、二乙基异丙基镓及二甲基叔丁基镓组成的组中的至少一种,但不限于此。其中,考虑到镓前体的蒸气压来确定用于供给所述镓前体的罐温度。优选地,在将罐温度保持为-40~100℃,优选为-40~30℃,将进料线温度保持为25~200℃的状态下供给所述镓前体,但本发明不限于此。当供给所述镓前体时,优选将所述基板10的温度保持为25~600℃,并且优选使用选自由氩气、氦气及氮气组成的组中的一种或多种气体作为载气。具体而言,所述铟前体优选包括选自由三甲基铟、三乙基铟、三异丙基铟、三丁基铟、三叔丁基铟、三甲氧基铟、三乙氧基铟、三异丙氧基铟、二甲基异丙氧基铟、二乙基异丙氧基铟、二甲基乙基铟、二乙基甲基铟、二甲基异丙基铟、二乙基异丙基铟及二甲基叔丁基铟组成的组中的至少一种,但不限于此。具体而言,所述第一硒前体优选包括选自由二甲基硒化物、二乙基硒化物、二异丙基硒化物、二叔丁基硒化物、二甲基二硒化物、二乙基二硒化物、二异丙基二硒化物、二叔丁基二硒化物、叔丁基异丙基硒化物及叔丁基硒醇组成的组中的至少一种,但不限于此。其中,考虑到铟前体和第一硒前体的各蒸气压来确定用于供给所述铟前体和第一硒前体的罐温度。优选地,在将罐温度保持为-40~100℃,优选为-40~30℃,将进料线温度保持为25~200℃的状态下供给所述铟前体,并且,在将罐温度保持为-40~100℃,优选为25~80℃,将进料线温度保持为25~200℃的状态下供给所述第一硒前体,但本发明不限于此。当同时供给所述铟前体和第一硒前体时,优选将所述基板10的温度保持为25~600℃,并且优选使用选自由氩气、氦气及氮气组成的组中的一种或多种气体作为载气。所述镓薄膜32的沉积厚度优选为10~300nm,且并且所述铟-硒薄膜33的沉积厚度优选为100~2000nm,但不限于此。其中,当镓薄膜32和铟-硒薄膜33的沉积厚度超出上述范围时,难以实现CIGS光吸收层30的理想带隙能量。另一方面,代替所述镓薄膜32的单独沉积,可以向镓前体同时供给第二硒前体来沉积镓硒薄膜32’。如上所述,当沉积镓硒薄膜32’时,可以进一步增加CIGS中的硒含量,从而可以进一步提高太阳能电池性能。所述第二硒前体可以与上述的第一硒前体相同或不同,具体而言,优选包括选自由二甲基硒化物、二乙基硒化物、二异丙基硒化物、二叔丁基硒化物、二甲基二硒化物、二乙基二硒化物、二异丙基二硒化物、二叔丁基二硒化物、叔丁基异丙基硒化物及叔丁基硒醇组成的组中的至少一种,但不限于此。在沉积铜薄膜31、镓薄膜(或镓-硒薄膜)32及铟-硒薄膜33之后,可以进一步进行热处理。所述热处理优选在200~600℃的温度下进行1~50分钟,更优选在400~600℃的温度下进行30~45分钟,但本发明不限于此。如上所述,通过优化热处理温度和热处理时间,可以对所述铜薄膜31、镓薄膜(或镓硒薄膜)32及铟-硒薄膜33进行充分的热处理来制造散装状态的CIGS光吸收层30。其中,所述热处理可以在选自由氩气、氦气、氮气、硫化氢(H2S)及硒化氢(H2Se)组成的组中的至少一种气体气氛下进行。即,所述CIGS光吸收层30的特征在于在与所述下电极层20接触的所述CIGS光吸收层30的下表面区域中发生硒缺陷,并且可以根据上述方法制造。根据本发明,由于防止包括Mo的下电极层20的表面与硒前体之间的直接接触且在与所述下电极层20接触的CIGS光吸收层30的下部区域中发生硒缺陷,可以使MoSex层的形成最小化,在所述下电极层20和所述CIGS光吸收层30之间形成的MoSex层的厚度可以为10nm或更小,更优选地,不形成MoSex层,但本发明不限于此。另一方面,在与所述缓冲层40接触的所述CIGS光吸收层30的上表面区域发生铜缺陷,因此由于在与所述缓冲层40接触的所述CIGS光吸收层30的上表面区域发生铜缺陷而可以进一步提高太阳能电池1的性能。所述CIGS光吸收层30的带隙能量优选为1.2~1.8eV,但不限于此。可以通过优化CIGS光吸收层30中的铜、镓、铟及硒的组成来将带隙能量调节为1.2~1.8eV,通过保持上述范围,太阳能电池1的开路电压Voc可以大大提高。所述CIGS光吸收层30的孔隙率可以为0.1%~10%。其中,当CIGS光吸收层30的孔隙率超出上述范围时,产生电流泄漏路径,从而太阳能电池的光电转换效率降低。所述CIGS光吸收层30的平均晶粒尺寸可能较大。其中,如果CIGS光吸收层30的平均结晶粒径过小,则晶体间的晶界会干扰电流流动,从而太阳能电池1的光电转换效率降低。所述CIGS光吸收层30的最终厚度优选为500~3000nm,但不限于此。其中,当CIGS光吸收层30的最终厚度超出上述范围时,太阳能电池1的光电转换效率降低。缓冲层40的形成所述缓冲层40可以由至少一层形成在所述CIGS光吸收层30上。所述缓冲层40可以通过溅射、化学溶液法、化学气相沉积法或原子层沉积法等来由CdS、InS、ZnS或Zn(O、S)等形成。其中,所述缓冲层40是n型半导体层,并且所述CIGS光吸收层30是p型半导体层。因此,所述CIGS光吸收层30和所述缓冲层40形成p-n结。即,由于所述CIGS光吸收层30和前电极层50在晶格常数和带隙能量方面具有较大差异,因此通过将具有在两个材料之间的中间水平的晶格常数和带隙能量的缓冲层40插入在两层之间来形成良好的结合。前电极层50的形成所述前电极层50形成在所述缓冲层40上,并且所述前电极层500是与所述CIGS光吸收层30形成p-n结的窗口层,并且可以通过溅射等方法由ZnO、掺杂有铝(Al)或氧化铝(Al2O3)的ZnO、ITO等形成。所述前电极层50可以具有在i型ZnO薄膜上沉积具有优良电光特性的n型ZnO薄膜或铟锡氧化物(ITO)薄膜的双重结构。其中,在所述缓冲层40上形成的第一层在太阳能电池的前表面上起到透明电极的功能,因此应具有高透光率和高电阻以阻挡光电子流泄漏的分流路径,因此,优选由未掺杂的i型ZnO薄膜形成。此外,沉积在i型ZnO薄膜上的第二层适合采用掺杂有由于低电阻而电流流动良好的铝(Al)、氧化铝(Al2O3)、硼(B)、镁(Mg)或镓(Ga)的ZnO薄膜或铟锡氧化物(ITO)薄膜。因此,根据本发明的太阳能电池1的特征在于,在所述下电极层20上供给铜前体以使用化学气相沉积法沉积铜薄膜31,然后供给镓前体、铟前体和第一硒前体以使用化学气相沉积法沉积镓薄膜32和铟-硒薄膜33,从而形成具有低孔隙率和大平均晶粒尺寸的CIGS光吸收层30,因此不仅可以使MoSex层的形成最小化,而且还可以提高太阳能电池1的性能。下面,为了帮助对本发明的理解,提出了优选的实施例,但是以下实施例只是示例本发明,本发明的范围并非限于以下实施例。[实施例]实施例1通过DC溅射涂覆在钠钙玻璃基板上制备的Mo电极以形成厚度为约0.49μm的下电极层。通过在下电极层上供给Cu(hfac)2(罐温度=40℃、进料线温度=100℃、基板温度=250℃、载气=Ar)作为Cu前体以通过化学气相沉积法沉积厚度为0.3μm的Cu薄膜。之后,作为Ga前体单独供给三乙基镓(罐温度=10℃、进料线温度=100℃、基板温度=250℃、载气=Ar)以化学气相沉积法沉积厚度为0.1μm的Ga薄膜,然后同时供给作为In前体的三甲基铟(罐温度=10℃、进料线温度=100℃、基板温度=250℃、载气=Ar)和作为Se前体的二乙基硒化物(罐温度=30℃、进料线温度=100℃、基板温度=250℃、载气=Ar)来通过化学气相沉积法沉积厚度为1.1μm的In-Se薄膜。之后,将所得物在550℃下热处理15分钟以形成厚度为1.5μm的CIGS光吸收层。图3示出根据螺旋电子能谱(AES)法的在CIGS光吸收层中沿厚度方向的各元素的组成比的变化。具体而言,通过将电子束照射在CIGS光吸收层的表面上,并且实时测量所发射的螺旋电子的能量以分析形成表面的元素的类型和含量来进行螺旋电子能谱(AES)。如图3所示,确认在CIGS光吸收层的上表面区域(溅射时间=约0秒)中发生铜缺陷,并且在CIGS光吸收层的下表面区域中(溅射时间=约1200秒)发生硒缺陷。之后,通过化学浴沉积法在CIGS光吸收层上形成具有0.05μm厚度的CdS缓冲层,然后通过RF溅射分别沉积厚度为0.05μm的i型ZnO薄膜和掺杂有2%铝且具有0.5μm厚度的ZnO薄膜来形成前电极层,由此最终制造太阳能电池。实施例2除了将热处理时间变为30分钟之外,以与实施例1中相同的方式最终制造太阳能电池。实施例3除了将热处理时间变为45分钟之外,以与实施例1中相同的方式最终制造太阳能电池。实施例4除了将热处理时间变为60分钟之外,以与实施例1中相同的方式最终制造太阳能电池。比较例1~4除了省略Ga薄膜的沉积之外,以与实施例1~4相同的方式最终制造太阳能电池。实验例(1)CIGS光吸收层的孔隙率测量和平均晶粒尺寸观察通过扫描电子显微镜(SEM)图像计算并测量根据实施例1制造的太阳能电池中的CIGS光吸收层的孔隙率,其具体结果示于下表1和图4中。[表1]区分孔隙率(%)实施例13并且,通过扫描电子显微镜(SEM)图像观察根据实施例1制造的太阳能电池中的CIGS光吸收层的平均晶粒尺寸,其结果示于图3中。图4为根据实施例1的太阳能电池的CIGS光吸收层的截面的扫描电子显微镜(SEM)照片。如表1和图4所示,可以确认根据实施例1的太阳能电池的CIGS光吸收层具有低孔隙率和大平均晶粒尺寸。(2)太阳能电池的性能评价评价根据实施例1~4和比较例1~4最终制造的太阳能电池的开路电压Voc,其结果示于表2和图5中。[表2]如上表2和图5所示,在实施例1~4的情况下,太阳能电池的开路电压Voc比比较例1~4显著高,因此可以确认太阳能电池的性能优异。这是能够通过在最佳条件下沉积Ga薄膜来适当地调节CIGS光吸收层的带隙能量的实施例1~4的太阳能电池的结果。以上虽参照附图对本发明的实施例进行了描述,但是本发明所属
技术领域
的技术人员可以理解,在不改变本发明的技术思想或必须特征的前提下可将其实施为其他具体形态。因此,应该理解,上述实施例在所有方面都是示例性的和非限制性的。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1