本发明属于H01L 27/00类半导体器件领域,具体涉及一种具有场板漂移结构的紫外雪崩光电二极管探测器及其探测方法。
背景技术:
雪崩光电二极管探测器(APD),应用于弱光探测。而用第三代宽禁带半导体材料(例如SiC,GaN等)制作的具有“日盲”特性的紫外光探测器,可在高温下工作而不需要昂贵笨重的制冷系统,且抗辐射、具有高的近紫外响应。因其在航天,天文探测及军事方面的卓越特性,一直是研究热点。
相比于传统的光电倍增管,紫外APD具有单光子响应、增益较大、对磁场不敏感、制作工艺简单、成本低、体积小、易于CMOS工艺集成、工作电压低、比较安全等优点,近年来得到了迅速发展。紫外APD在天文探测、射线探测、生物医学、航天,火箭技术以及其他弱光探测领域的应用都是当今研究的热点。
但是,由于目前紫外APD技术发展还不成熟,还有很多缺点,如探测效率低(<40%),对远紫外光不敏感、暗电流大、信噪比低等缺点,限制了紫外APD的实际应用。新的器件结构设计和工艺改进正在积极地探索中。紫外APD由雪崩倍增结区和吸收漂移区组成。现有的紫外APD探测效率低主要是由于其雪崩区面积大,暗激发和暗电流噪声大,信噪比低。由于时间相关性测量以及器件工作性能的要求,单元输出电容不能太大,暗计数和漏电流越低越好,即要求雪崩区的面积不能太大。
针对上述问题,本发明的目的是提出一种新型的雪崩探测器单元结构,即具有场板漂移结构的雪崩二极管探测器,以下简称为FPD-APD(Field plate drift channel Avalanche Photo Detector)。它既可以作为APD的基本探测单元而大规模集成,也可以制作成大面积的单元探测器。FPD-APD的基本结构是以大面积场板结构和侧向保护环以及衬底构成的反偏PN结共同形成的漂移区作为光探测的有源区并在其中形成一条光生载流子(空穴或电子)能谷漂移通道,以侧向漂移环在通道中产生成侧向漂移电场,而以位于单元中心的点状雪崩二极管作为光生载流子(空穴或电子)的收集区。
FPD-APD结构用于制作单元大面积探测器时,雪崩区与光子收集区域分开,雪崩倍增结区较小,能制作出比较低雪崩电压的器件,雪崩区域电场均匀性可控性好;同时在雪崩倍增高场区域比较小的同时保证大面积的光探测区域,提高了量子效率;减小雪崩区域的面积,有助于减小暗电流和暗激发,同时对于晶片质量和缺陷的容忍度提高,防止了大面积雪崩倍增高场区在缺陷位置的提前击穿。器件的有源区全耗尽,减小了光生载流子的复合,提高了探测效率;同时其输出电容比传统大面积雪崩结APD小,其电子学噪声一般小于具有同样通光窗口面积和光吸收区厚度的常规雪崩光电二极管;小的电容也能提高器件的频率响应;适合于对穿透深度较浅的软X射线及紫外光的探测。在航天、高能物理、天文探测及军事等领域具有广泛的应用前景。
应用于多单元集成时,采用FPD-APD结构的紫外光探测器可以方便的解决单元面积与输出电容要求之间的矛盾,可以在保持低的输出电容的同时提供很高的填充因子(大于70%)和探测效率。同时,由于采用很小面积的点状雪崩区,高场区面积大大减小,可以有效减小漏电流和暗记数(相比于相同有效探测面积的器件)。FPD-APD采用正面入射方式,入射面电极可以采用透明导体,例如氧化铟锡(ITO)膜作为电极材料,有效减小电极对光的遮挡和吸收。对远紫外光到近紫外光波段都敏感。
技术实现要素:
针对现有技术中存在的问题,本发明的目的在于提供一种紫外雪崩光电二极管探测器,其有效解决了现有技术中存在的问题。本发明的另一目的在于提供一种使用本发明的探测器进行探测的方法。
为实现上述目的,本发明采用以下技术方案:
一种紫外雪崩光电二极管探测器,所述探测器的每个器件单元从上至下依次包括CE电极、SiO2层、P-well或N-well、衬底和背面电极;其中,所述P-well或N-well的上部中心设置有点状雪崩二极管,所述点状雪崩二极管与所述CE电极电连通;所述SiO2层的外围周向设置有接地GND。
进一步,所述CE电极的面积小于所述SiO2层的面积,所述接地GND设置在所述CE电极周向外侧的SiO2层上。
进一步,所述探测器由N型或P型碳化硅单晶片制成。
进一步,所述碳化硅单晶片的厚度为100微米-0.5毫米。
进一步,所述P-well或N-well由离子注入或外延工艺制成,深度为0.1微米-5微米。
进一步,所述CE电极由金属电极或透明导电膜制成。
进一步,所述透明导电膜为氧化铟锡膜,其厚度为10纳米-10微米。
一种使用紫外雪崩光电二极管探测器进行探测的方法,所述方法为:CE电极相对于GND加负偏压到雪崩击穿电压以上,在空穴漂移到雪崩区后引发雪崩信号;背面电极相对于GND加正偏压,使P-well全耗尽并在P-well中形成一条空穴电势能谷,紧贴MOS场板结构下的SiO2层形成N型弱反型层作为电阻分压层,以形成GND到CE电极之间的均匀漂移电场;被测光信号从所述探测器的正面入射进入器件,在耗尽区中产生电子-空穴对,电子被排斥进入衬底,而空穴被集中于漂移通道中并在漂移环所产生的侧向电场下漂移至器件中心的雪崩区,在雪崩区发生电离碰撞倍增而被放大或产生雪崩信号。
进一步,所述MOS场板结构由所述CE电极、SiO2层和P-well构成。
进一步,所述被测光信号指紫外光或X光。
本发明具有以下有益技术效果:
本申请采用宽禁带半导体材料来制作,雪崩区与光子收集区域分开,雪崩倍增结区较小,能制作出比较低雪崩电压的器件,雪崩区域电场均匀性可控性好;同时在雪崩倍增高场区域比较小的同时保证大面积的光探测区域,提高了量子效率;减小雪崩区域的面积,有助于减小暗电流和暗激发,同时对于晶片质量和缺陷的容忍度提高,防止了大面积雪崩倍增高场区在缺陷位置的提前击穿。器件的有源区全耗尽,减小了光生载流子的复合,提高了探测效率;同时其输出电容比传统大面积雪崩结APD小,其电子学噪声一般小于具有同样通光窗口面积和光吸收区厚度的常规雪崩光电二极管;小的电容也能提高器件的频率响应。FPD-APD采用正面入射方式,入射面所有电极均采用透明导电膜,例如氧化铟锡(ITO)膜作为电极材料,有效减小电极的阻挡和对光的吸收。全耗尽的有源区可深达几微米到几十微米,对近紫外到X光波段都敏感,适合于对穿透深度较浅的软X射线及可见光的探测,在航天、火箭技术、军事、生物医学、高能物理等领域具有广泛的应用前景。
附图说明
图1为本发明紫外雪崩光电二极管探测器的单个器件的结构示意图。
具体实施方式
下面,参考附图,对本发明进行更全面的说明,附图中示出了本发明的示例性实施例。然而,本发明可以体现为多种不同形式,并不应理解为局限于这里叙述的示例性实施例。而是,提供这些实施例,从而使本发明全面和完整,并将本发明的范围完全地传达给本领域的普通技术人员。
如图1所示,本发明了提供了一种紫外雪崩光电二极管探测器,该探测器的每个器件单元从上至下依次包括CE(Collecting electrode)电极1、SiO2层2、P-well或N-well3、衬底4和背面电极5;其中,P-well或N-well3的上部中心设置有点状雪崩二极管6,点状雪崩二极管6与CE电极1电连通;SiO2层2的外围周向设置有接地GND7。
CE电极1的面积小于SiO2层2的面积,接地GND7设置在CE电极1周向外侧的SiO2层2上。
本申请的探测器由高掺杂(N型或P型)SiC(或者其他类似宽禁带半导体材料)单晶片制成碳化硅单晶片的厚度为100微米-0.5毫米;其包括大面积场板和掩埋反偏构造的MOS全耗尽有源区和点状雪崩区。
P-well或N-well3由离子注入或外延工艺制成,深度为0.1微米-5微米。
CE电极1由透明导电膜制成。透明导电膜可以为氧化铟锡膜,其厚度为10纳米-10微米。
本发明还提供了一种使用紫外雪崩光电二极管探测器进行探测的方法,该方法为:CE电极加负偏压(相对于GND)到雪崩击穿电压以上,在空穴漂移到雪崩区后引发雪崩信号;同时CE延伸的大面积栅极场板结构(可使用ITO透明栅极材料)可以维持栅极场板底下的P型电阻分压构成的漂移电场分布沟道;背面电极BE加一合适正偏压(相对于GND),使P-well全耗尽并在P-well中形成一条空穴电势能谷(使光生空穴集中于能谷中以减小复合损失),紧贴MOS场板结构下的SiO2层形成几纳米到几十纳米的N型弱反型层作为电阻分压层,以形成GND到CE之间的均匀漂移电场。被测光信号从所述FPD-APD探测器的正面入射进入器件(透过ITO电极),在耗尽区中产生电子-空穴对,电子被排斥进入衬底,而空穴被集中于漂移通道中并在漂移环所产生的侧向电场下漂移至器件中心的雪崩区,在雪崩区发生电离碰撞倍增而被放大或产生雪崩信号。
本申请的MOS场板结构由CE电极1、SiO2层2和P-well构成。
被测光信号指紫外光(波长范围是0.2-1.1微米)或X光(能量范围是1-20keV)。
由本申请的新型FPD-APD(Field plate drift channel Avalanche Photo Detector)探测器单元作为基本结构,可以构造出分立的或集成在同一芯片上的器件阵列或含有该基本结构的集成电路或集成光电子线路。
上面所述只是为了说明本发明,应该理解为本发明并不局限于以上实施例,符合本发明思想的各种变通形式均在本发明的保护范围之内。