本发明涉及显示技术领域,尤其涉及一种触控显示面板及显示装置。
背景技术:
oled(organiclightemittingdiode,有机发光二极管)显示器是一种自发光显示器,与lcd(liquidcrystaldisplay,液晶显示器)相比,oled显示器不需要背光源,因此oled显示器更为轻薄,此外oled显示器还具有高亮度、低功耗、宽视角、高响应速度、宽使用温度范围等优点而越来越多地被应用于各种高性能显示领域当中。将触摸功能整合到显示面板中是目前的先进技术趋势。
外挂式触摸屏是将触摸屏与显示屏分开生产,然后贴合到一起从而形成具有触摸功能的显示面板,但是存在制作成本高、光透过率较低和显示面板较厚等缺点。对于内嵌式触摸屏,可以通过复用用于显示功能的阴极或阳极为触控电极来实现触摸功能,但是都存在触控灵敏度低的问题,该问题亟待解决。
技术实现要素:
本发明提供一种触控显示面板及显示装置,以实现提高触控灵敏度。
第一方面,本发明实施例提供了一种触控显示面板,包括:
依次叠层设置的阳极层、有机发光功能层和阴极层;
所述阳极层具有多个阳极电极以及与所述阳极电极同层绝缘设置的虚拟阳极电极,且所述虚拟阳极电极围绕所述阳极电极设置;
所述阴极层具有多个开口,所述开口暴露出所述有机发光功能层;
所述触控显示面板还包括多个第一薄膜晶体管和多个第二薄膜晶体管;
每一所述阳极电极与一所述第一薄膜晶体管的第二端电连接;所述第一薄膜晶体管的第二端与所述第二薄膜晶体管的第二端短接;每一所述虚拟阳极电极与至少一个所述第二薄膜晶体管的第一端电连接;
所述触控显示面板还包括触控电极,所述触控电极由所述虚拟阳极电极与所述阳极电极电连接构成。
第二方面,本发明实施例还提供了一种显示装置,包括第一方面所述的触控显示面板。
本发明提供的触控显示面板包括依次叠层设置的阳极层、有机发光功能层和阴极层,阳极层包含阳极电极和虚拟阳极电极,虚拟阳极电极围绕阳极电极设置,阴极层的多个开口漏出有机发光功能层,触控显示面板还包括多个第一薄膜晶体管和多个第二薄膜晶体管,阳极电极与第一薄膜晶体管的第二端电连接,第一薄膜晶体管的第二端与第二薄膜晶体管的第二端短接,第二薄膜晶体管的第一端与虚拟阳极电极电连接,因此阳极电极可以通过第二薄膜晶体管实现与虚拟阳极电极电连接,阳极电极和虚拟电极共同构成触控显示面板的触控电极,增大了触控电极与触摸主体(例如手指)之间的触控信号强度(示例性地,通过增加触控电极的面积,增加了触控电极与手指之间的电容值,进而增加了触控信号的强度),增强了触控显示面板和显示装置的触控灵敏度。
附图说明
图1a为本发明实施例提供的一种触控显示面板的剖面结构示意图;
图1b为本发明实施例提供的一种阴极层的俯视结构示意图;
图1c为本发明实施例提供的一种触控电极的俯视结构示意图;
图1d为图1c中s1区域的放大结构示意图;
图2为本发明实施例提供的另一种触控电极的俯视结构示意图;
图3为本发明实施例提供的一种显示装置的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
图1a为本发明实施例提供的一种触控显示面板的剖面结构示意图,图1b为本发明实施例提供的一种阴极层的俯视结构示意图,图1c为本发明实施例提供的一种触控电极的俯视结构示意图,图1d为图1c中s1区域的放大结构示意图,结合图1a-图1d所示,本发明实施例提供的触控显示面板包括依次叠层设置的阳极层10、有机发光功能层30和阴极层20,阳极层10具有多个阳极电极11以及与阳极电极11同层绝缘设置的虚拟阳极电极12,且虚拟阳极电极12围绕阳极电极11设置,阳极电极11和虚拟阳极电极12可以采用同种材料在同一工艺制程中完成,也可以采用不同的材料在不同的工艺制程中完成。阴极层20具有多个开口21,开口21暴露出有机发光功能层30,触控显示面板还包括多个第一薄膜晶体管41和多个第二薄膜晶体管42,每一阳极电极11与一第一薄膜晶体管41的第二端412电连接,第一薄膜晶体管41的第二端412与第二薄膜晶体管42的第二端422短接,每一虚拟阳极电极12与至少一个第二薄膜晶体管42的第一端421电连接,图1a仅示例性地设置一个虚拟阳极电极12与一个第二薄膜晶体管42的第一端421电连接,并非对本发明的限制,在其他实施方式中,可以设置一个虚拟阳极电极12与多个第二薄膜晶体管42的第一端421电连接。第一薄膜晶体管41的第一端411可以为源极/漏极,第一薄膜晶体管41的第二端412可以为漏极/源极;第二薄膜晶体管42的第一端421可以为源极/漏极,第二薄膜晶体管42的第二端422可以为漏极/源极。
触控显示面板还包括触控电极50,为了使触控显示面板更为轻薄,本发明实施例采用复用阳极电极11为触控电极50一部分的方式,且触控电极50由虚拟阳极电极12与阳极电极11电连接构成。可以理解的是,形成阳极层10的材料相对于形成阴极层20的材料具有更小的面阻(面阻的大小代表了材料的阻值大小),因此具有更小的信号延迟,更适合于作为触控电极层,即阳极电极和虚拟阳极电极构成的触控电极减小了触控信号延迟的程度,提高了触控灵敏度。
本发明实施例提供的触控显示面板包括依次叠层设置的阳极层、有机发光功能层和阴极层,阳极层包含阳极电极和虚拟阳极电极,虚拟阳极电极围绕阳极电极设置,即虚拟阳极电极形成在多个子像素之间,触控显示面板的阴极层的多个开口漏出有机发光功能层,以防止阴极层对于触控信号的屏蔽作用,提高触控灵敏度。此外,触控显示面板还包括多个第一薄膜晶体管和多个第二薄膜晶体管,阳极电极与第一薄膜晶体管的第二端电连接,第一薄膜晶体管的第二端与第二薄膜晶体管的第二端短接,第二薄膜晶体管的第一端与虚拟阳极电极电连接,因此阳极电极可以通过第二薄膜晶体管实现与虚拟阳极电极电连接,阳极电极和虚拟电极共同构成触控显示面板的触控电极,增大了触控电极与触摸主体(例如手指)之间的触控信号强度(示例性地,通过增加触控电极的面积,增加了触控电极与手指之间的电容值,进而增加了触控信号的强度),增强了触控显示面板的触控灵敏度。
可选地,参考图1d,每一触控电极50可以由至少一个阳极电极11和至少一个虚拟阳极电极12构成,每一触控电极50包括至少一个阳极电极11以及位于同一触控电极50的阳极电极11周围的虚拟阳极电极12,每一触控电极50包含一虚拟阳极电极12且虚拟阳极电极12与其他触控电极50绝缘设置,即,可以设置一触控电极50由多个阳极电极11和一个虚拟阳极电极12构成。由于触摸主体(例如手指)与触控显示面板的接触面积足够大,所以无需设置过多的触控电极,如果设置触控电极的大小太小(例如设置一个触控电极50包括一个阳极电极11和围绕阳极电极11绝缘设置的虚拟阳极电极12),就需要在多个触控电极上施加同样的电信号,将会导致过多的触控电极线布线,也会导致触控驱动电路过于冗杂。本发明实施例中的触控电极由多个阳极电极和一个虚拟阳极电极构成,防止了触控驱动电路和触控电极线布线的冗杂设置。
可选地,参考图1c和图1d,触控电极50包括多个阵列排布的触控感测电极52和多个阵列排布的触控驱动电极51,沿矩阵列方向(y方向),多个触控驱动电极51重复排列,且多个触控感测电极52重复排列,沿矩阵行方向(x方向),触控驱动电极51和触控感测电极52交替排列。沿矩阵列方向(y方向)重复排列的触控驱动电极51构成了触控驱动电极列510,沿矩阵列方向(y方向)重复排列的触控感测电极52构成了触控感测电极列520,沿矩阵行方向(x方向),触控驱动电极列510与触控感测电极列520交替排列,且任一触控驱动电极列510和与之距离最近的触控感测电极列520成对出现共同构成触控电极对500。触控电极对500中,在触控感测电极52和触控驱动电极51之间可以形成互电容(耦合电容),当人体接近或者接触到显示面板时,由于人体接地,手指与电容屏之间就会形成一个与上述互电容串联的电容,进而会造成触控感测电极52所检测到的电容减小并可产生相应的触控感测信号,由此再经过相应的转换就可以确定具体的触控发生位置。本发明实施例提供的触控显示面板适用于互容式触控的情况,在其他实施方式中,还可以设置触控显示面板为自容式触控显示面板。
可选地,参考图1a-图1d,触控显示面板还包括多条触控电极线60,沿矩阵列方向(y方向),同一列触控驱动电极51连接同一触控电极线60,沿矩阵列方向(y方向),不同触控感测电极52连接不同的触控电极线60。具体地,可以设置每一触控驱动电极51包括一虚拟阳极电极12,将同一列触控驱动电极51的虚拟阳极电极12连接至同一触控电极线60,设置每一触控感测电极包括一虚拟阳极电极12,将同一列中不同触控感测电极52的虚拟阳极电极12连接至不同的触控电极线60,即每一触控感测电极52的虚拟阳极电极12连接至一个单独的触控电极线60。需要说明的是,本发明实施例提供的互容式触控显示面板的触控电极排列方式以及触控电极线的连接方式为优选方式,并非对本法的限定,在其他实施方式中,例如还可以设置不同的触控驱动电极51连接不同的触控电极线60,或者设置同一列触控触控感测电极52连接同一触控电极线60。
可选地,参考图1a-图1d,在任一触控电极对500中,虚拟阳极电极12在触控驱动电极列510和触控感测电极列520的交界处具有多个凸起121,任意两个相邻的虚拟阳极电极12的凸起121交叉排列。因此,触控驱动电极51和触控感测电极52之间的交界处构成了曲线,增强了触控驱动电极51和触控感测电极52之间形成的耦合电容,进而增强了触控显示面板的触控灵敏度。
可选地,参考图1a,有机发光功能层30包括有机发光结构31和用于间隔多个有机发光结构31的像素限定层32。其中,有机发光结构31可以包括第一辅助功能层、发光材料层和第二辅助功能层。第一辅助功能层为空穴型的辅助功能层,可以具有多层结构,例如包括空穴注入层、空穴传输层及电子阻挡层中的一层或几层。第二辅助功能层为电子型的辅助功能层,其也可以具有多层结构,可以包括电子传输层、电子注入层及空穴阻挡层中的一层或几层。
可选地,参考图1a-图1d,开口21在阳极层10上的垂直投影与阳极电极11不交叠,即,将阴极层20中的开口21避开有机发光结构31和阳极电极11设置。如果在有机发光结构31和阳极电极11的上方设置开口,则触控显示面板在进行发光显示时,阴极和阳极之间的电流或电压减小,影响显示效果,因此,本发明实施中,将开口设置在发光区域外,保证了触控显示面板拥有良好的显示效果。
可选地,参考图1b,开口21的形状为正方形,可以理解的是,也可以将开口21设置为矩形、三角形等多边形以及将开口21设置为圆形、椭圆形或者将开口21设置为多边形、圆形和椭圆形的任意组合。
可选地,参考图1a-图1d,阳极电极11为反射电极,即有机发光结构31发出的光线照射到阳极电极11后会,经过阳极电极11的反射作用朝着阴极层20远离阳极层10的方向出射光线,触控显示面板为顶发射的触控显示面板。可以理解的是,在其他实施方式中,也可以在阴极层中设置反射层,将阴极设置为反射电极,将触控显示面板设置为底发射的触控显示面板。
图2为本发明实施例提供的另一种触控电极的俯视结构示意图,如图2所示,触控显示面板为自电容式触控显示面板,触控电极50包括多个阵列排布的自容式触控电极块501。每一触控电极块501分别与例如零势能点大地构成电容,当手指触摸到或者靠近触控显示面板时,位于触摸位置处的电容值会增加,进而在进行触摸检测时,可以通过检测相应的电容值的变化,来确定触摸点的位置。
可选地,参考图1a-图2,自容式触控显示面板还包括多条触控电极线60,每一条触控电极线60与一个自容式触控电极块501连接,具体可以与自容式触控电极块501的虚拟阳极电极12连接。
在上述各实施例的基础上,可选地,参考图1a-图2,触控电极线60与第一薄膜晶体管41的第一端411和第二端412以及第二薄膜晶体管42的第一端421和第二端422同层设置且采用同种材料。即,可以在制作第一薄膜晶体管41和第二薄膜晶体管42的源漏极时,采用同种工艺和同种材料来制作触控电极线60。由于形成薄膜晶体管(第一薄膜晶体管41和第二薄膜晶体管42)的源漏极的材料的阻值比形成薄膜晶体管的栅极的材料具有更小的阻值,因此具有更好的导电性和更小的信号延迟,提高了触控显示面板的触控灵敏度。另外,将触控电极线与薄膜晶体管的源漏极同层设置,相对于将触控电极线与薄膜晶体管的栅极同层设置来说,触控电极线和虚拟阳极电极之间通过电连接的过孔具有更小的深度,更容易制作。在其他实施方式中,还可以将触控电极线与薄膜晶体管的栅极同层设置且采用同种材料制作。可选的,所述触控显示面板还包括多个电容,将触控电极线与触控显示面板中的电容的任一电极板同层设置且采用同种材料制作。本申请的触控电极线与电容一起制作,无需单独设置,减少了工艺步骤,降低了生产成本。
参考图1a,本发明实施例提供的触控显示面板的工作方式为:在显示阶段,第一薄膜晶体管41导通,第二薄膜晶体管42截止,虚拟阳极电极12与阳极电极11电绝缘,可以通过在第一薄膜晶体管41的第一端411施加用于显示的电信号,控制有机发光结构31发光;在触控阶段,第一薄膜晶体管41关断,第二薄膜晶体管42导通,阳极电极11与虚拟阳极电极12电连接导通共同作为触控电极50,可以通过触控电极线60在触控电极50上施加用于触控的电信号以实现对触控位置的检测。
可选地,参考1a,上述触控阶段可以包括第一阶段和第二阶段,在第一阶段,对虚拟阳极电极12输入触控脉冲信号以实现对触控位置的检测;在第二阶段,无脉冲信号的输出,可以对虚拟阳极电极12输入参考电压,避免了虚拟阳极电极12的悬空,进而避免了虚拟阳极电极12悬空造成的触控阶段的误发光现象。
可选地,参考1a,在显示阶段,对虚拟阳极电极12输入参考电压。在显示阶段,阳极电极11和虚拟阳极电极12处于电绝缘状态,给虚拟阳极电极12输入参考电压是为了防止虚拟阳极电极12悬空。虚拟阳极电极12悬空会造成虚拟阳极电极12与阳极电极11之间比较强的耦合效应,影响显示面板的正常发光和触控显示面板的显示效果。因此,在显示阶段对虚拟阳极电极输入参考电压保证了触控显示面板具有良好的显示效果。
本发明实施例还提供了一种显示装置,图3为本发明实施例提供的一种显示装置的结构示意图,如图3所示,本发明实施例提供的显示装置包括本发明任意实施例所述的触控显示面板100,其可以为如图3中所示的手机,也可以为电脑、电视机、智能穿戴设备等,本实施例对此不作特殊限定。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。