技术领域:
本发明涉及半导体技术领域,具体涉及一种高压快恢复二极管结构。
背景技术:
:
已有人提出的双面终端结构(中国发明专利申请号:201610685489.x),如图1所示,要求衬底浓度比常规情况低,硅片厚度薄,才能耗尽到背面,使背面终端起作用。尽管双面终端可以提高终端结构的面积效率,但这种结构造成背面电场强穿通,抬高了阴极侧电场,这至少会带来两种危害。1、在反向恢复期间剩余存储电荷很快耗尽导致具有非常高的di/dt的电流跳断和高电压过冲,这可能在系统中产生很高的电磁干扰甚至导致器件破坏。因此,将双面终端应用于高压二极管会造成二极管软恢复性能变差。2、在高压下关断大电流时,阴极侧极易发生局部的电场尖峰、雪崩注入和电流丝化,造成器件烧毁,从而显著降低了器件的电流关断能力。
另一方面,也有人提出了电场电荷抽取(fieldchargeextraction,fce)和可控制注入背面空穴(controlledinjectbacksidehole,cibh)结构的二极管。这两种二极管结构在阴极侧具有局域p+掺杂区。这些p+掺杂区域在二极管反向恢复末期注入空穴来补偿电子,防止在nn+结处形成高电场强度,从而避免在nn+结处产生雪崩。这两种二极管与具有双面终端的标准的二极管相比,显着提高了电流关断能力和改进的软反向恢复特性。
技术实现要素:
为了克服双面终端二极管软恢复性能差和电流关断能力弱的缺陷,本发明将双面终端和局域p+掺杂阴极区二极管相结合,提供了一种高压快恢复二极管结构。
本发明中一种高压快恢复二极管结构的技术方案是:
所述高压快恢复二极管结构包括n-漂移区6、位于n-漂移区上表面的阳极区及阳极电极1、位于n-漂移区下表面的阴极区及阴极电极8、位于阴极区表面附近的局域p+掺杂区12和双面终端区17。
进一步地,本发明提供的一个优选技术方案为:
所述局域p+掺杂区12包含多个周期性排列的局域p+掺杂区12,其中,每个局域p+掺杂区的掺杂剂量为1×1015~1×1018cm-2,宽度为1~10μm,厚度为1~10μm,排列间距为1~10μm,到阴极区表面的深度为0~10μm。
进一步地,本发明提供的一个优选技术方案为:
所述高压快恢复二极管终端均为双面终端,包括正面终端区171和背面终端区172,分别环绕在所述阳极区和阴极区周围。
进一步地,本发明提供的一个优选技术方案为:
所述正面终端区171设置在所述二极管阳极侧,包括场板、场限环、半绝缘薄膜层、具有横向变掺杂的结终端延伸结构中的一种,或者两种或两种以上的结合;
所述背面终端区172设置在所述二极管阴极侧,包括场板、场限环、半绝缘薄膜层、具有横向变掺杂的结终端延伸结构中的一种,或者两种或两种以上的结合。
与最接近的现有技术相比,本发明的有益效果是:
本发明提供的一种高压快恢复二极管,改进了二极管反向恢复软度;提高了高压下的大电流关断能力;提高终端结构的面积效率和芯片耐压能力;阳极区和终端区的p+区可在同一工序中完成,工艺兼容性好。
附图说明
通过附图将本发明的上述及其它目的、特征和优势变得更加清晰。图中的各个掺杂区未必按比例绘制而是着重于图示本发明的结构。
图1图示了现有技术一种具有双面终端结构的二极管结构示意图。
图2图示了fce结构和双面终端场限环结构相结合的高压快恢复二极管结构示意图。
图3图示了cibh结构和双面终端场限环结构相结合的高压快恢复二极管结构示意图。
图4图示了fce结构和双面终端场板加场环结构相结合的高压快恢复二极管结构示意图。
图5图示了cibh结构和双面终端场板加场环结构相结合的高压快恢复二极管结构示意图。
图6图示了fce结构和双面终端为横向变掺杂的结终端延伸结构相结合的高压快恢复二极管结构示意图。
图7图示了cibh结构和双面终端为横向变掺杂的结终端延伸结构相结合的高压快恢复二极管结构示意图。
其中,1:二极管阳极电极;2:终端氧化层;3:阳极p+掺杂区;4:正面终端n+场限环;5:正面终端p+场限环;6:n-漂移区;7:阴极n+掺杂区;8:二极管阴极电极;9:正面终端n+截止环;10:背面终端p+场限环;11:背面终端n+场限环;12:局域p+掺杂区;13:正面终端场板;14:背面终端场板;15:具有横向变掺杂的正面结终端扩展结构;16:具有横向变掺杂的背面结终端扩展结构;17:双面终端区;171:正面终端区;172:背面终端区。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面对本发明实施例提供的一种高压快恢复二极管结构进行说明。
本实施例中的高压快恢复二极管为一种具有局域p+掺杂区阴极结构的双面终端二极管,包括n-漂移区6、位于n-漂移区上表面的阳极区及阳极电极1、位于n-漂移区下表面的阴极区及阴极电极8、位于阴极区表面附近的局域p+掺杂区12和双面终端区17。
所述局域p+掺杂区12在背面阴极区表面或内部,根据应用需求不同,可采用不同的宽度、深度和排列周期;
所述双面终端结构包括正面终端区171和背面终端区172,分别环绕在所述阳极区和阴极区周围,可提高终端结构的面积效率;
所述正面终端区171设置在所述二极管阳极侧,包括场板、场限环、半绝缘薄膜层、具有横向变掺杂的结终端延伸结构中的一种,或者两种或两种以上的结合;
所述背面终端区172设置在所述二极管阴极侧,包括场板、场限环、半绝缘薄膜层、具有横向变掺杂的结终端延伸结构中的一种,或者两种或两种以上的结合。
基于上述高压快恢复二极管结构类型,本发明还提供了两个二极管结构的实施例,具体为:
实施例1
本实施例中高压快恢复二极管,如图2所示,背面局域p+掺杂区12在阴极表面,掺杂剂量为1×1015~1×1018cm-2,宽度为1~10μm,厚度为1~10μm,排列间距为1~10μm。高压快恢复二极管终端均为双面终端,包括正面终端区171和背面终端区172,分别环绕在所述阳极区和阴极区周围。所述正面终端区171设置在所述二极管阳极侧,包括场板、场限环、半绝缘薄膜层、具有横向变掺杂的结终端延伸结构中的一种,或者两种或两种以上的结合;所述背面终端区172设置在所述二极管阴极侧,包括场板、场限环、半绝缘薄膜层、具有横向变掺杂的结终端延伸结构中的一种,或者两种或两种以上的结合。仿真结果表明,在不增加边缘终端的宽度或面积以及芯片的厚度的前提下,此高压快恢复二极管结构可以将击穿电压提高约40%~50%,过流关断能力可达额定电流的2~5倍,小电流下器件反向恢复软度明显改善,电压振荡幅度减小50%以上。
实施例2
本实施例中高压快恢复二极管,如图3所示,背面局域p+掺杂区12在阴极内部,掺杂剂量为1×1015~1×1018cm-2,到阴极区表面的深度为1~10μm,宽度为1~10μm,厚度为1~10μm,排列间距为1~10μm。高压快恢复二极管终端均为双面终端,包括正面终端区171和背面终端区172,分别环绕在所述阳极区和阴极区周围。所述正面终端区171设置在所述二极管阳极侧,包括场板、场限环、半绝缘薄膜层、具有横向变掺杂的结终端延伸结构中的一种,或者两种或两种以上的结合;所述背面终端区172设置在所述二极管阴极侧,包括场板、场限环、半绝缘薄膜层、具有横向变掺杂的结终端延伸结构中的一种,或者两种或两种以上的结合。仿真结果表明,在不增加边缘终端的宽度或面积以及芯片的厚度的前提下,此高压快恢复二极管结构可以将击穿电压提高约40%~50%,过流关断能力可达额定电流的2~5倍,小电流下器件反向恢复软度明显改善,电压振荡幅度减小50%以上。由于局域p+掺杂区12浮空,其正向压降略小于实施例1中二极管结构。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。