用于制造金属‑陶瓷衬底的方法以及金属‑陶瓷衬底与流程

文档序号:14122684阅读:473来源:国知局
用于制造金属‑陶瓷衬底的方法以及金属‑陶瓷衬底与流程

本发明涉及一种用于制造金属-陶瓷衬底的方法以及一种相关的金属-陶瓷衬底。



背景技术:

这种金属-陶瓷衬底优选用于半导体功率模块领域。此时,陶瓷板或陶瓷层、例如氧化铝陶瓷在其表面侧中的至少一个上、例如顶侧和/或底侧上设有金属化结构,其中,例如通过蚀刻工艺产生的电路结构、例如导电路径、接触表面和/或连接表面被引入至少一个金属化侧。例如,具有金属化结构的这种陶瓷衬底例如用作电子功率模块的电路载体,其中,它们确保热和机械连接以及电绝缘。

金属化结构在陶瓷衬底上的施加可以例如使用如de2319854a中描述的方法进行。在该工艺中,金属部件、例如铜板或铜箔在表面侧设有由金属和反应气体、特别是氧气的化合物制成的涂层。这种涂层与相邻的薄金属层形成共晶物,共晶物的熔化温度低于金属的熔化温度。然后,将金属部件放置在陶瓷衬底上,并与陶瓷一起加热到高于共晶物的熔点但低于金属的熔化温度的温度。从而,实质上,只有共晶中间层熔化。冷却后,金属部件和陶瓷衬底此时彼此接合。当使用铜或铜合金作为金属时,这种方法也称为dcb结合或dcb工艺(dcb:directcopperbonding),但该方法也可以使用其他金属进行。例如,dcb工艺包括以下工艺步骤:

-氧化铜箔,使得形成均匀的铜氧化物层;

-将铜箔放置到陶瓷层上;

-将复合物加热到大约1025℃到1083℃之间的工艺温度,例如大约1071℃;以及

-冷却到室温。

由此获得的材料复合物、即金属-陶瓷衬底然后可以以所需方式进一步加工。

用于在陶瓷衬底上产生厚的金属化结构的另一种已知方法是,例如de2213115a或ep153618a2中使用的所谓的活性硬焊工艺(amb:activemetalbrazing,活性金属硬焊)。在这种工艺中,金属箔与陶瓷衬底之间的接合使用硬焊料在大约800℃到1200℃之间的温度下产生,所述硬焊料除了主成分,例如铜、银和/或金外,还含有活性金属。所述活性金属,例如hf、ti、zr、nb或ce的组中的至少一种元素通过化学反应在焊料与陶瓷之间产生接合,而焊料与金属之间的接合通过金属硬焊料接合形成。

在这两种工艺中,均使用了高温,因此,由于热膨胀系数的不同,在冷却到室温期间,金属化结构已在底下的陶瓷衬底上施加了力。此外,这种金属-陶瓷衬底当用作电子器件或组件的衬底时由于最终的功率损失而会经受热波动,从而陶瓷层上的应力可在金属化结构的边缘区域产生,所述应力可导致陶瓷层开裂,因此会使该金属-陶瓷衬底或电子组件损坏。为了避免这样的与温度相关的应力,例如从102010024520a1中可得知一种用于提高金属-陶瓷衬底的热机械性能的方法,在所述方法中,金属化结构与陶瓷层之间存在的边缘在施加和结构化所述金属化结构之后通过施加电绝缘填充材料被覆盖。这种填充材料例如可以是耐热的聚合物材料或是由玻璃或陶瓷制成的材料。

一种用于制造金属-陶瓷衬底的方法也可从de102013013842b4中获得,在所述方法中,存在于陶瓷与金属之间的金属化结构的边缘区域处和/或延伸到陶瓷中的裂纹被填充或灌入一种可固化的密封材料,其中,在填充或灌入所述密封材料之后,金属化结构的边缘区域被密封材料覆盖到金属化结构的厚度的至多50%的高度。

金属-陶瓷衬底在上述在金属化结构中引入电路结构之后的任务是,通过金属化结构中的沟槽形居间空间在衬底的相同侧分离开不同的电位,例如使用通过所述居间空间彼此间隔开的导电路径、接触表面和/或连接表面。这些居间空间,这里也被称为蚀刻沟槽,由于有限的可用空间或金属-陶瓷衬底上的高的封装密度而通常相对较小,因此,在不同电位的相邻金属化区域之间的这些沟槽中会产生相对较高的电场强度。金属-陶瓷衬底在不利的环境条件下使用的过程中,例如在空气和湿气中残留有硫化氢(h2s)的情况下,可在金属化结构和/或其与陶瓷层的金属接合部(活性焊料)处的高电场强度的这些点开始发生电迁移(=枝晶生长)。最终,如果在涉及的金属化区域之间发生电迁移,可在它们之间形成短路,这会最终导致金属-陶瓷衬底或由金属-陶瓷衬底所承载的电气或电子器件、特别是半导体器件的损坏。

在这样的背景下,本发明的目的是提供一种用于制造金属-陶瓷衬底的方法以及一种金属-陶瓷衬底,其中,特别是在通过沟槽形居间空间彼此间隔开的金属化结构的相邻边缘区域的区域处的电迁移至少显著降低,或甚至被完全阻止。而且,金属-陶瓷衬底应该容易制造。



技术实现要素:

应当指出,在以下描述中单独解释的特征可以以任何技术上合理的方式彼此结合,并展现了本发明的附加实施例。该描述特别是结合附图附加性地表征和具体描述了本发明。

根据本发明,在用于制造金属-陶瓷衬底的方法中,至少一个金属层附连到陶瓷层的至少一个表面侧,所述金属层通过至少一个沟槽形居间空间被结构化为多个彼此分离的金属化区域,以形成导电路径和/或连接表面和/或接触表面。此外,根据本发明,至少所述居间空间被填充有电绝缘填充材料。此时,在居间空间中金属化区域的面对且邻接陶瓷层的所述表面侧的第一边缘以及在居间空间中金属化区域的背离陶瓷层的所述表面侧的至少一个第二边缘覆盖有填充材料。

所述金属-陶瓷衬底的制造优选使用如在说明书的前序部分中所简要解释的且现有技术中所公知的dcb或amb方法进行。然而,也可以使用不同的方法、例如通过电镀法将金属层施加到陶瓷衬底或陶瓷层。在该工艺中,对沟槽形居间空间中的金属化区域的下边缘和上边缘的覆盖与用于将金属化结构施加到陶瓷层的方法步骤独立地进行。

通过向金属化区域的至少居间空间引入填充材料(所述居间空间如上所述地在金属-陶瓷衬底后来作为电路、特别是功率电路使用的过程中通常是高电场强度的地方),电化学迁移过程至少被延迟,或甚至完全被阻止。此时,显著有利的是,除了各金属化区域的邻接陶瓷层的下边缘外,各金属化区域的特别是背离陶瓷层的上边缘也被填充材料覆盖,这是因为根据本发明,通过这种方式,本会在各金属化区域的上边缘处出来的电通线此时也被导入电绝缘填充材料中。由此,填充材料起着介电质的作用,其中,填充材料的电绝缘性能应至少在金属-陶瓷衬底的工作温度范围内、优选在大约-50℃至约250℃的温度范围内得到确保。

此外,至少在沟槽形居间空间中引入的填充材料还防止在使用金属-陶瓷衬底作为电路、特别是功率电路的过程中引入湿气和气体、例如h2s进入所述高电场强度区域,从而防止在金属化区域之间的居间空间中形成含水分子层,所述金属化区域由所述居间空间间隔开,所述分子层是该区域中发生电迁移的必要条件。填充材料的这种性能应至少在金属-陶瓷衬底的工作温度范围内、优选在大约为-50℃至约250℃的温度范围内得到确保。

根据本发明的一个有利的实施例,至少所述居间空间被填充填充材料包括:将粉末或粘性材料形式的填充材料至少引入到居间空间中,以及随后热或化学处理粉末或粘性材料,以硬化填充材料。换句话说,填充材料首先作为粉末或粘性材料施加到金属-陶瓷衬底,由此特别是被引入沟槽形居间空间。然后,粉末或粘性材料通过热或化学工艺固化或硬化。填充材料的硬化取决于它的化学成分,例如可以通过冷却、加热或紫外线照射进行。

为了更容易地填充沟槽形居间空间,本发明的另一个有利的实施例提供了:填充材料、特别是粉末或粘性材料形式的填充材料通过振动被压实到至少沟槽形居间空间中。因此,至少居间空间的无气泡、无孔洞填充可以以特别有利的方式实现。这样,在金属-陶瓷衬底后续用作电路、特别是功率电路的过程中,在硬化的填充材料的气泡或孔洞中由于居间空间中通常存在高电场强度而产生的不利的局部放电可得以避免。

本发明的另一个有利的实施例提供了:填充材料在衬底阶段填充到至少居间空间中。换句话说,在本实施例中,在任何电气或电子器件、例如半导体器件被安装到金属层上之前,填充材料被填充到至少沟槽形居间空间中,对此,金属-陶瓷衬底可以用作载体。可看出其中特殊的优点是,在金属-陶瓷衬底上施加填充材料时不受电气或电子器件的阻碍或限制,这样,可容易地执行。在这种情况下,例如,特别是为固化填充材料对填充材料进行热处理、例如特别是对填充材料进行加热,不受电气或电子器件、特别是灵敏的半导体器件的最大允许的无损坏存放温度的限制。

可能要必须保持无填充材料的金属化区域、例如连接表面和/或接触表面,可根据需要在将填充材料施加到金属-陶瓷衬底之前例如通过使用适当成形的覆盖元件或覆盖工具覆盖。

本发明的一个替代性的有利实施例提供了:填充材料在模块阶段填充到至少居间空间中。换句话说,只有当至少一个电气或电子器件、特别是半导体器件安装到金属层上后才将该填充材料施加到金属-陶瓷衬底或将填充材料引入沟槽形居间空间中。在施加填充材料之前,以金属-陶瓷衬底作为载体的所有电气或电子器件优先安装到金属-陶瓷衬底上。然而,在这种情况下,必须例如在用于硬化填充材料的热处理中考虑电气或电子器件的最大允许的无损坏存放温度,以及必须考虑器件与金属-陶瓷衬底的金属化结构之间的连接开始松脱的最大允许温度。在这种情况下优选使用这样的填充材料,其硬化温度低于电气或电子器件的无损坏存放温度和器件与金属化结构之间的接合的临界温度。另一方面,在模块阶段将填充材料施加到金属-陶瓷衬底、特别是沟槽形居间空间中更容易,因为更少的连接表面和/或接触表面,或根本没有这些表面必须保持无填充材料。

优选地,还可以通过所谓的银烧结来提高器件与金属-陶瓷衬底的金属化结构接合的临界温度,其中,电气器件或电子器件使用银颗粒烧结在衬底的金属化结构上,所述银颗粒可含有有机添加剂。通过这种方式,即使银元素的熔点为961℃,但在大约200℃的温度下银颗粒已经可以相互接合,以在器件与衬底的金属化结构之间产生烧结接合层。这种接合明显比标准焊接接合具有更高的可靠性,因为烧结层的熔化温度与电子功率器件的工作温度之间具有显著的差距。相应地,例如为了硬化填充材料而对填充材料的热处理、特别是对填充材料的加热也可以在更高的温度下进行,这拓宽了可用填充材料的选择。

本发明的另一个有利实施例提供了:金属-陶瓷衬底的存在沟槽形居间空间的至少一个表面侧基本上完全覆盖填充材料。通过这种方式,使填充材料能更容易地施加到金属-陶瓷衬底,因为填充材料不必仅限于沟槽形居间空间。通过这种方式,填充材料也可以提供金属-陶瓷衬底的完全电绝缘,从而可省去金属-陶瓷衬底的附加电绝缘。当然,这种附加的电绝缘也可应用于金属-陶瓷衬底。在该工艺中,填充材料优选在金属-陶瓷衬底与附加施加的绝缘层之间形成居间层。

根据本发明的另一个有利实施例,在用填充材料填充至少居间空间之前,至少一个电连接器连接到为了相关的金属化区域的目的而提供的连接表面。在这种情况下,连接器的至少允许至金属化区域的外部电连接的一部分从金属化区域延伸到金属-陶瓷衬底周围的自由空间中。优选地,在施加填充材料之前,要在衬底外被电接触的所有这样的连接表面都设有这种电连接器,使得在施加填充材料的过程中,这些连接表面也不需要单独地被避开,从而再次简化了本发明的方法。

根据本发明的另一个有利实施例,功能填料被添加到填充材料,以调整填充材料的热膨胀系数和/或防止填充材料开裂。通过使所述热膨胀系数与金属-陶瓷衬底的金属化结构和/或陶瓷的热膨胀系数相适应,在热循环中产生较低的机械应力。这样可以增加制造的材料复合物的可靠性或使用寿命。

根据本发明的一个特别优选的实施例,可能具有附加填料的玻璃材料用作填充材料。这种玻璃材料例如可以为bi-zn-b玻璃或类似材料,其可在约400℃~900℃的温度范围内烧制。由于它相对较高的烧制温度,这种玻璃材料特别适合作为在衬底阶段、即没有电气器件或电子器件安装在金属-陶瓷衬底上时施加的填充材料并被烧制。

作为一种适合于在模块阶段、即当电气器件或电子器件存在于金属-陶瓷衬底上时施加到金属-陶瓷衬底的玻璃材料,由硼铋族制成的三元玻璃材料是优选的,其优选是无铅的,例如为bi2o3-b2o3-zno(本文也称为bzb)、bi2o3-zno-sio2(本文也称为bzs)、p2o3-b2o3-zno(本文也称为pbz)或熔化温度低的钒玻璃。这些玻璃材料的特点是烧制温度低于700℃,优选在大约250℃和600℃之间,特别优选在大约400℃和500℃之间。

作为功能填料,颗粒、例如氧化铝(al2o3)、氮化铝(aln)或氮化硼(bn),可添加比例最高可达约35%的体积比地添加到玻璃材料,以便以所需的方式调整填充材料的热膨胀系数或热导率。特别优选地,填充材料的热膨胀系数小于75ppm/k,例如在bzb的情况下,它的热膨胀系数约为10ppm/k。

作为另一种颗粒状填料,可例如选择氧化锆(zro2),以防止填充材料开裂。防止填充材料开裂,也可替代性地或附加性地使用纤维状填料、例如由sic、si3n4或上述材料中的一种制成的陶瓷纤维实现。

基本上,填充材料可以是许多不同的物质,只要它们具有足够的耐温性,即,能够承受最高可达200℃或250℃的温度而无相变或结构变化。当然,填充材料必须是一种介电材料,其在金属-陶瓷衬底的工作温度范围内、优选在大约-50℃~大约250℃的工作温度范围内是电绝缘的,且在硬化后必须牢固地附着到金属化结构和陶瓷。因此,填充材料与金属层和金属-陶瓷衬底的陶瓷层的粘附力特别优选至少为2n/mm。此外,优选至少在金属-陶瓷衬底的优选大约-50℃~大约250℃的工作温度范围内能够防潮和气密的填充材料。

根据本发明的另一方面,公开了一种金属-陶瓷衬底,其包括至少一个陶瓷层和附连到陶瓷层的至少一个表面侧的至少一个金属层,所述金属层通过至少一个沟槽形居间空间被结构化为多个彼此分离的金属化区域,以形成导电路径和/或连接表面和/或接触表面。根据本发明,至少居间空间被填充电绝缘填充材料。而且,在居间空间中金属化区域的面对且邻接陶瓷层的所述表面侧的第一边缘以及在居间空间中金属化区域的背离陶瓷层的所述表面侧的至少一个第二边缘覆盖有填充材料。

对于这种金属-陶瓷衬底的优点和效果,参考上面对根据本发明的用于制造金属-陶瓷衬底的方法的描述,该描述也类似地适用于上面限定的金属-陶瓷衬底。

根据本发明的一个优选的实施例,填充材料具有小于75ppm/k的热膨胀系数。

附加性地或替代性地,金属化区域和/或陶瓷层上的填充材料的层厚度可小于50μm。

此外,功能填料可以添加到填充材料,以调整填充材料的热膨胀系数和/或防止填充材料开裂。

本发明的另一个有利实施例提供了:金属-陶瓷衬底的存在沟槽形居间空间的至少一个表面侧基本上完全被填充材料覆盖。

特别优选地,如本文已经所述的,填充材料是玻璃材料,可能具有附加填料。

附图说明

本发明的附加特征和优点可以从下面的描述中获得,而没有将它们限制于下面参照附图更详细解释的本发明的示例性实施例。在这些附图中,示意性地示出了以下内容:

图1根据本发明的金属-陶瓷衬底的第一示例性实施例的横截面;

图2根据本发明的金属-陶瓷衬底的第二示例性实施例的横截面;

图3根据本发明的金属-陶瓷衬底的第三示例性实施例的横截面。

在不同的图中,功能上等同的部分始终使用相同的附图标记标示,从而这些部分通常也仅描述一次。

具体实施方式

图1示出了根据本发明的金属-陶瓷衬底1的第一示例性实施例的横截面。可以从图1中看出,金属-陶瓷衬底1包括陶瓷层2和附连到陶瓷层2的一个表面侧的金属层3,在这种情况下,所述金属层为铜层。为了形成导电路径和/或连接表面和/或接触表面,所示的金属-陶瓷衬底1的金属层3通过沟槽形居间空间4被结构化成多个彼此分离的金属化区域5和6。这种结构化通常是采用光刻和合适的蚀刻方法进行。此外,居间空间4填充有电绝缘填充材料7,所述电绝缘填充材料在金属-陶瓷衬底1的所示的示例性实施例中为玻璃材料。

从图1中也可以看出,在居间空间4中金属化区域5、6的面对且邻接陶瓷层2的所述表面侧的第一边缘8以及在居间空间4中金属化区域5、6的背离陶瓷层2的所述表面侧的第二边缘9覆盖有填充材料7。

在图1所示的金属-陶瓷衬底1的示例性实施例中,金属层3使用amb工艺连接到陶瓷层2。因此,在金属层3与陶瓷层2之间建立连接的活性焊料10被示于金属层3或金属化区域5、6与陶瓷层2之间。根据本发明,活性焊料10被认为是与金属层3相关联的。自然地,当例如采用dcb工艺来将金属层3接合到陶瓷层2时,可以省掉这种活性焊料10。

图2示出了根据本发明的金属-陶瓷衬底11的第二示例性实施例的横截面。金属-陶瓷衬底11与图1所示的金属-陶瓷衬底1的区别仅在于,填充材料7,在这种情况下为玻璃材料,在金属-陶瓷衬底11的沟槽形居间空间4中具有不同的横截面,所述横截面可使用合适的方法产生。然而,在这种情况下,金属-陶瓷衬底11中的下第一边缘8以及上第二边缘9也被填充材料7覆盖。

图3示出了根据本发明的金属-陶瓷衬底12的第三示例性实施例的横截面。在这里所示的金属-陶瓷衬底12中,填充材料7,在这种情况下为玻璃材料,基本完全覆盖金属-陶瓷衬底12的存在沟槽形居间空间4的表面侧,或覆盖其整个表面。此外,金属化区域5、6分别使用适当的连接表面连接到连接器13。连接器13具有细长形状,使得这些连接器的一部分分别从金属化区域5或6延伸到金属-陶瓷衬底12周围的自由空间14中。连接器13用于金属化区域5和6的衬底外的电接触。

上述的根据本发明的用于制造金属-陶瓷衬底的方法以及相关的金属-陶瓷衬底不限于本文公开的实施例,而是还包括具有相同效果的其它实施例。特别是,金属化结构也可以使用dcb工艺应用于陶瓷层,所以,在上面的示例性实施例中描述的活性焊料层可以省掉。此外,陶瓷层的下侧可以自然地也设有金属化结构,所述金属化结构也可以被结构化或不被结构化。在下侧的金属化结构被结构化的情况下,也可以以本文描述的方式将填充材料引入到隔离开金属化区域的沟槽形居间空间中。

此外,上述发明原则上可适用于可覆盖金属层、例如cu(铜)或al(铝)或它们的合金的任何类型的陶瓷衬底,例如aln(氮化铝)、si3n4(氮化硅)、al2o3(氧化铝),等等。这样,金属化结构可使用不同的方法、例如amb、dcb(directcopperbonding,直接铜结合)、dab(directaluminumbonding,直接铝结合)、厚层工艺或类似方法施加到衬底的一个或两个相反的表面侧。特别优选的是dcb和amb陶瓷衬底。这里的“衬底”同义地用于上面提到的所有类型的衬底。

在优选实施例中,使用根据本发明的方法所制造的金属-陶瓷衬底用于制造电路、特别是功率电路。

附图标记列表:

1金属-陶瓷衬底

2陶瓷层

3金属层

4沟槽形居间空间

5金属化区域

6金属化区域

7填充材料

8第一边缘

9第二边缘

10活性焊料

11金属-陶瓷衬底

12金属-陶瓷衬底

13连接器

14自由空间

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1