薄膜晶体管的制作方法与流程

文档序号:19399972发布日期:2019-12-13 19:05阅读:440来源:国知局
薄膜晶体管的制作方法与流程

本发明涉及半导体器件领域,特别是涉及一种薄膜晶体管的制作方法。



背景技术:

薄膜晶体管液晶显示器(tft-lcd)是平板显示领域中最重要的一种,由于其具有众多优点,如体积薄、重量轻、画面品质优异、功耗低、寿命长、数字化等,而且也是唯一可跨越所有尺寸的显示技术,其应用领域非常广泛,几乎涵盖了当今信息社会的主要电子产品,如电视、监视器、便携式电脑、手机、pda、gps、车载显示、仪器仪表、公共显示和医用显示等。oled(organiclightemittingdiode,有机发光二极管)作为一种电流型发光器件,因其所具有的自发光、快速响应、宽视角和可制作在柔性衬底上等特点而越来越多地被应用于高性能显示领域当中。在amoled(activematrix/organiclightemittingdiode,有源矩阵有机发光二极管)技术中,每个oled均通过tft(thinfilmtransistor,薄膜晶体管)开关电路逐行扫描输入电流。

薄膜晶体管液晶显示器(tft-lcd)和amoled中使用的薄膜晶体管的栅极材料通常使用钼、钨或钼钨合金等。在栅极金属层通过构图工艺形成栅极的刻蚀过程中,例如,采用mo作为栅极金属层的材料时,一般采用两步刻蚀法:第一步使用含有sf6的气体,例如sf6与o2混合气体作为刻蚀气体,刻蚀掉部分栅极金属层;第二步使用含有cl2的气体,例如cl2与o2混合气体作为刻蚀气体,把剩余的栅极金属层刻蚀掉。其中,在第二步的刻蚀过程中,会反应生成mocl2o2、mocl4o、mocl5等气体,而mocl2o2、mocl4o、mocl5等反应生成物因蒸气压低,会再次粘附到刻蚀腔室内,易使腔室变脏。而在第一步的刻蚀过程中,会反应生成mof6、mof4o等气体,而mof6、mof4o等反应生成物因蒸气压高,不会污染腔室,同时具有清洁腔室的效果。因此现有技术通常是采用反复进行第一步和第二步的刻蚀过程来防止腔室污染,但是通过第二步的刻蚀过程之后并不能完全防止污染腔室。而由于使用含氟气体会把栅极金属层下层的栅极绝缘膜刻蚀掉,而cl2和o2作为刻蚀气体不会把栅极绝缘膜刻蚀掉,因此现有技术中不能只采用上述第一步刻蚀就形成栅极,而必须采用上述第一步和第二步的刻蚀过程形成栅极,这样就不可避免将造成腔室的污染。



技术实现要素:

基于此,有必要针对在栅极的形成过程中由于刻蚀工艺产生蒸气压低的反应生成物,造成腔室的污染的技术问题,提供一种薄膜晶体管的制作方法。

一种薄膜晶体管的制作方法,包括:在基板上形成缓冲层;在所述缓冲层上形成多晶硅层;对所述多晶硅层进行构图工艺,形成有源层;在所述有源层上沉积栅极绝缘层;在所述栅极绝缘层上沉积栅极金属层,通过构图工艺,采用co作为主要的刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极;以栅极为掩膜,对所述有源层进行离子注入,形成源区和漏区;在所述栅极上沉积钝化层,并在所述栅极绝缘层及所述钝化层形成过孔,并制作源极及漏极。

在其中一个实施例中,所述栅极金属层的材料为钼、钨或钼钨合金。

在其中一个实施例中,所述采用co作为主要的刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极之前包括:采用含有sf6的气体作为刻蚀气体对所述栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层。

在其中一个实施例中,所述第一厚度与所述第二厚度的比为(1~2):1。

在其中一个实施例中,所述第二厚度为50~150nm。

在其中一个实施例中,所述栅极金属层的厚度为100-800nm。

在其中一个实施例中,所述钝化层的厚度为200nm~800nm。

一种薄膜晶体管,所述薄膜晶体管采用如上任一实施例所述的制作方法制造得到。

一种阵列基板,包括基板,以及设置于所述基板上的栅线、数据线、像素电极及如上所述的薄膜晶体管。

一种显示装置,包括如上所述的阵列基板。

上述薄膜晶体管的制作方法,在将栅极金属层通过构图工艺形成栅极的刻蚀过程中,采用co作为主要的刻蚀气体,生成的反应生成物的蒸气压高,不会粘附到刻蚀腔室内,不会造成腔室污染,且co气体作为主要的刻蚀气体也不会把栅极金属层下层的栅极绝缘膜刻蚀掉。

附图说明

图1为一个实施例中薄膜晶体管的制作方法的流程示意图;

图2a-2g分别为图1所示的薄膜晶体管在制作过程中的各步骤所产生的结构示意图。

具体实施方式

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。

例如,一种薄膜晶体管的制作方法的流程示意图,包括:在基板上形成缓冲层;在所述缓冲层上形成多晶硅层;对所述多晶硅层进行构图工艺,形成有源层;在所述有源层上沉积栅极绝缘层;在所述栅极绝缘层上沉积栅极金属层,通过构图工艺,采用co作为主要的刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极;以栅极为掩膜,对所述有源层进行离子注入,形成源区和漏区;在所述栅极上沉积钝化层,并在所述栅极绝缘层及所述钝化层形成过孔,并制作源极及漏极。

本实施例的薄膜晶体管的制作方法,在将栅极金属层通过构图工艺形成栅极的刻蚀过程中,采用co作为主要的刻蚀气体,生成的反应生成物的蒸气压高,不会粘附到刻蚀腔室内,不会造成腔室污染,且co气体作为主要的刻蚀气体也不会把栅极金属层下层的栅极绝缘膜刻蚀掉。

例如,一种薄膜晶体管的制作方法,如图1所示,其具体包括如下步骤:

步骤110:在基板上形成缓冲层。

请参阅图2a,在干净的基板100上形成缓冲层200,基板100可为玻璃基板或柔性基板。形成的缓冲层200可以提高待形成的非晶硅层与基板之间的附着程度。同时,还可以防止基板中的金属离子扩散至有源层,降低杂质缺陷,并且可以减少漏电流的产生。

具体地,在玻璃基板上利用等离子体化学气相沉积法(pecvd)沉积一层一定厚度的缓冲层。沉积材料可以为单层的氧化硅(siox)膜层或氮化硅(sinx)膜层,或者为氧化硅(siox)和氮化硅(sinx)的叠层。

其中,形成sinx膜层的反应气体可以为sih4、nh3、n2的混合气体,或者为sih2cl2、nh3、n2的混合气体;形成siox膜层的反应气体可以为sih4、n2o的混合气体,或者为sih4、硅酸乙酯(teos)的混合气体。

步骤120:在缓冲层上沉积非晶硅层,并对非晶硅层进行激光退火工艺,形成多晶硅层。

例如,采用等离子体增强化学气相沉积(pecvd)工艺在缓冲层上沉积非晶硅层。又如,沉积温度一般控制在500℃以下。

在本实施例中,非晶硅层的厚度为40nm~60nm。当然,也可根据具体的工艺需要选择合适的厚度。例如,非晶硅层的厚度为42nm~55nm,又如,非晶硅层的厚度为45nm、48nm、50nm、51nm、52nm或54nm。

例如,采用氯化氙(xecl)、氟化氪(krf)、氟化氩(arf)等准分子激光器进行激光退火,例如波长为308nm,来进行准分子激光退火。激光光束经过光学系统后为线性光源。

又如,准分子激光退火的脉冲重复率(pulserepetitionratio)为300hz~800hz,又如,准分子激光退火的脉冲重复率为400hz~600hz;又如,扫描间距(scanpitch)为15μm~30μm;又如,激光能量密度为150~600mj/cm2,又如,激光能量密度为350~500mj/cm2;又如,扫描速率优选为0.5mm/s~50mm/s,又如,扫描速率为0.5mm/s~50mm/s1mm/s~30mm/s,又如,扫描速率为2mm/s~10mm/s。

优选地,在进行激光退火工艺之前,需要对非晶硅层进行去氢处理,使得氢含量降至2%以下,防止氢爆现象的产生。例如,采用热退火处理将氢从该非晶硅层中排除。

步骤130:对多晶硅层进行构图工艺,形成有源层。

例如,具体地,其包括以下步骤:

步骤一:利用光刻工艺形成掩膜,采用干法刻蚀方法形成图形,形成包括源区、漏区和沟道区的有源层300,其完成后的结构的截面请参阅图2b。

步骤二:对有源层进行离子注入,形成沟道掺杂。

对沟道进行掺杂的目的是为了调节器件的阈值电压。例如,当需要薄膜晶体管的阈值电压向正的方向移动时,对有源层进行硼元素掺杂;当需要薄膜晶体管的阈值电压向负的方向移动时,对有源层进行磷元素掺杂或砷元素掺杂;而根据工艺如果不需要调节阈值电压,则不需要对有源层进行离子注入实现沟道掺杂。

根据薄膜晶体管阈值电压的需要,注入介质为含硼元素或含磷元素的气体。例如,需要含硼元素注入时,如以b2h6与h2的混合气体为注入介质,又如,b2h6与h2的比例为1%~30%,注入能量范围为2~50kev,更优选的能量范围为4~10kev,注入剂量范围为0~5×1013atoms/cm3,优选地,注入剂量范围为0~9×1012atoms/cm3。又如,采用含磷元素,如以ph3与h2的混合气体作为注入介质,例如,ph3与h2的比例为1%~30%;注入能量范围为5~50kev,更优选的能量范围为7~20kev;注入剂量范围为0~5×1013atoms/cm3,优选地,注入剂量范围为0~9×1012atoms/cm3

步骤140:在有源层300上沉积栅极绝缘层400,其完成后的结构的截面请参阅图2c。

例如,采用化学气相沉积方法,在形成了有源层的基板上形成栅极绝缘层。又如,沉积温度一般控制在500℃以下。又如,栅极绝缘层的厚度可为80~200nm,也可根据具体工艺需要选择合适的厚度。又如,栅极绝缘层采用单层的氧化硅、氮化硅,或者二者的叠层。

步骤150:在栅极绝缘层400上沉积栅极金属层,通过构图工艺,采用co作为主要的刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极500,其完成后的结构的截面请参阅图2d。

例如,采用溅射、热蒸发或等离子体增强化学气相沉积(pecvd)、低压力化学气相沉积(lpcvd)、常压化学气相淀积(apcvd)、电子回旋共振微波等离子体化学气相沉积(ecr-cvd)等方法沉积栅极金属层,然后,通过构图工艺,利用掩膜板(mask)进行曝光、显影和刻蚀,将栅极金属层图形化,形成栅极。

例如,栅极金属层的材料为钼、钨或钼钨合金,又如,使用上述几种材料的组合。在本实施例中,栅极金属层的厚度为100-800nm,例如,栅极金属层的厚度为400nm,当然,栅极金属层的厚度也可根据具体工艺需要选择合适的厚度。

干法刻蚀工艺中,采用co作为主要的刻蚀气体,例如,采用反应离子刻蚀法进行干法刻蚀;例如,采用等离子体刻蚀法进行干法刻蚀,例如,采用电感耦合等离子体刻蚀法进行干法刻蚀。例如,采用co作为主要的刻蚀气体对栅极金属层进行等离子体刻蚀中,刻蚀机的等离子体射频源的功率(sourcepower)为4000-6000w,偏置射频源的功率(biaspower)为800-1200w。例如,刻蚀机的等离子体射频源的功率(sourcepower)为5000w。例如,偏置射频源的功率(biaspower)为1000w。例如,刻蚀腔内的气压为4-6pa。例如,刻蚀腔内的气压为5pa。例如,co气体的流量为400-600sccm。例如,co气体的流量为500sccm。

在栅极绝缘层上沉积栅极金属层,通过构图工艺,例如,采用co作为主要的刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极;例如,采用co气体和o2气体的混合气体作为刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极;例如,采用co气体和惰性气体(如he、ar和ne等气体)的混合气体作为刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极;例如,采用co气体和cl2气体的混合气体作为刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极;例如,采用o2气体、惰性气体和cl2气体中的至少一种与co的混合气体作为刻蚀气体对所述栅极金属层进行干法刻蚀,形成栅极。

本实施例中,例如,栅极金属层的材料为mo,采用co作为主要的刻蚀气体,反应生成mo(co)6,在80℃的工艺温度下,mo(co)6的蒸气压为1.0*(e1~e2)mmhg。而如采用cl2与o2混合气体作为刻蚀气体,反应生成mocl2o2、mocl4o等,在80℃的工艺温度下,mocl2o2约为5.0*(e-1~e0)mmhg,mocl4o约为5.0*(e-1~e0)mmhg。因此,由此可知,co作为主要的刻蚀气体的反应生成物的蒸气压大大高于cl2与o2混合气体作为刻蚀气体的反应生成物的蒸气压,因此,采用co作为主要的刻蚀气体反应生成物的蒸气压高,不会粘附到刻蚀腔室内,从而能够避免造成腔室污染,且co气体作为主要的刻蚀气体也不会把栅极金属层下层的栅极绝缘膜刻蚀掉。

为了减少栅极金属层形成栅极的过程的时间。例如,在构图工艺中,利用掩膜板(mask)进行曝光、显影后进入刻蚀过程时,在采用co作为主要的刻蚀气体对栅极金属层进行干法刻蚀,形成栅极之前,还包括步骤:

采用含有sf6的气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层。

即,采用两步刻蚀法,分为第一刻蚀和第二刻蚀,第一刻蚀采用含有sf6的气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层,第二刻蚀采用co作为主要的刻蚀气体对剩余的第二厚度的栅极金属层进行干法刻蚀,形成栅极。例如,第一刻蚀中,sf6气体的流量为400~600sccm,例如,sf6气体的流量为500sccm。

采用含有sf6的气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层,例如,采用sf6气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层;例如,采用sf6气体和o2气体的混合气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层;例如,采用sf6气体和惰性气体(如he、ar和ne等气体)的混合气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层;采用sf6气体、co气体和cl2气体的混合气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层;例如,采用o2气体、惰性气体、co气体和cl2气体中的至少一种与sf6的混合气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层。

例如,采用sf6气体和o2气体的混合气体作为刻蚀气体对栅极金属层进行初步干法刻蚀,刻蚀掉第一厚度的栅极金属层,剩余第二厚度的栅极金属层,第一刻蚀中,sf6气体的流量为400~600sccm,o2的流量为100~300sccm。例如,sf6气体的流量为500sccm,o2气体的流量为200sccm。例如,第二刻蚀中,co气体的流量为400-600sccm。例如,co气体的流量为500sccm。

由于采用含有sf6的气体作为刻蚀气体的刻蚀速率高,先采用含有sf6的气体作为刻蚀气体先刻蚀掉第一厚度的栅极金属层,再采用co作为主要的刻蚀气体刻蚀掉剩余第二厚度的栅极金属层防止将下层的栅极绝缘膜刻蚀掉,大大减少了栅极金属层形成栅极的过程的时间。

例如,第一厚度与第二厚度的比为(1~2):1。例如,第一厚度与第二厚度的比为1.5:1。例如,栅极金属层的厚度为250nm,第一厚度为150nm,第二厚度为100nm。这样,刻蚀速率较快的含有sf6的气体作为刻蚀气体刻蚀掉大部分的栅极金属层,再采用刻蚀速率较慢的co作为主要的刻蚀气体刻蚀掉较小部分的栅极金属层以防止将下层的栅极绝缘膜刻蚀掉,进一步减少了栅极金属层形成栅极的过程的时间。例如,第二厚度为50~150nm。例如,第二厚度为100nm。这样,不管栅极金属层的厚度是多少,只保留小部分的栅极金属层通过含有co的气体刻蚀,加快了整个刻蚀过程的速率,减少了栅极金属层形成栅极的过程的时间。

步骤160:以栅极500为掩膜,对有源层300进行离子注入,形成源区310及漏区320,其完成后的结构的截面请参阅图2e。

例如,在本实施例中采用具有质量分析仪的离子注入方式。又如,根据设计需要,注入介质为含硼元素和/或含磷元素的气体,以形成p型或n型薄膜晶体管。例如,采用含硼元素,如以b2h6/h2的混合气体为注入介质,例如,b2h6与h2的比例为1%~30%;注入能量范围为5~50kev,更优选的能量范围为20~30kev;注入剂量范围为1×1013~1×1017atoms/cm3,优选地,注入剂量范围为5×1014~5×1015atoms/cm3;又如,采用含磷元素,如以ph3/h2的混合气体作为注入介质。如以ph3/h2的混合气体为注入介质,例如,ph3与h2的比例为1%~30%;注入能量范围为20~110kev,更优选的能量范围为50~70kev;注入剂量范围为1×1013~1×1017atoms/cm3,优选地,注入剂量范围为5×1014~5×1015atoms/cm3

步骤170:在栅极500上沉积钝化层600,并在栅极绝缘层400及钝化层600形成过孔610,其完成后的结构的截面请参阅图2f。

具体地,可以通过化学气相沉积工艺沉积厚度为200nm~800nm的钝化层,例如,钝化层为氧化物、氮化物或者氧氮化合物,又如,钝化层为单层结构或者多层结构,又如,形成钝化层的气体为sih4,nh3,n2或者sih4,n2o。

例如,采用干法刻蚀的方法,以光刻工艺形成掩膜,在钝化层和栅极绝缘层上形成过孔以暴露源区和漏区。其中,干法刻蚀工艺中,可采用含氟元素或含氯元素的气体,如sf6、cf4、chf3、ccl2f2等气体或者前述气体与o2的混合气体作为刻蚀介质,采用反应离子刻蚀法、等离子刻蚀法或电感耦合等离子体刻蚀法进行刻蚀。

步骤180:制作源极710及漏极720,其完成后的截面请参阅图2g。

具体地,在钝化层的上方采用溅射方式、热蒸发方式或等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式形成金属层。在金属层的上方,采用光刻工艺以光刻胶形成光阻掩模,并采用湿法刻蚀或干法刻蚀形成包括源极和漏极的图形。请参阅图2g,源极710贯穿过孔610并与源区310电连接,漏极720贯穿过孔610并与漏区320电连接。

至此,通过该方法即已完成阵列基板包含栅极、源极和漏极的薄膜晶体管的制备,而阵列基板上的栅线、数据线及像素电极可根据常规工艺得到。根据阵列基板的结构需求,可通过常规工艺最终形成显示面板,进一步形成显示装置。

又如,一种薄膜晶体管,其采用上述任一实施例所述制作方法制备得到。

又如,一种阵列基板,其包括基板,以及设置于所述基板上的薄膜晶体管、栅线、数据线及像素电极,其中,所述薄膜晶体管采用上述任一实施例所述制作方法制备得到。

本实施例中提供一显示装置,该显示装置包括上述任一实施例中的阵列基板。例如,该显示装置为具有显示功能的产品或部件;例如,该显示装置为液晶面板、电子纸、oled面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或者导航仪。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1