一种高稳定性氧化物半导体薄膜晶体管及其制备方法与流程

文档序号:13738121阅读:160来源:国知局
一种高稳定性氧化物半导体薄膜晶体管及其制备方法与流程

本发明涉及半导体器件技术领域,具体涉及一种高稳定性氧化物半导体薄膜晶体管及其制备方法。



背景技术:

薄膜晶体管是有源矩阵液晶显示(amlcd)和有机发光二极管显示(amoled)的核心部件,其对显示器件的工作性能起到至关重要的作用。随着新材料不断出现、工艺不断地改进、结构的不断创新,许多具有高迁移率高和高电流开关比的薄膜晶体管有望被应用于新型有源显示阵列基板中。在有源阵列显示器件工作时,选择管和驱动管会受到长时间的电学偏压作用,这种偏压作用会因具体工作环境的差异而有所不同,因而薄膜晶体管是否能在偏压过程中保持稳定的电学性能将决定背板驱动的效果和使用寿命。此外,薄膜晶体管有源层材料受到热和光的作用,材料内将会产生一定量的光生载流子,从而影响了器件的电学参数。所以,薄膜晶体管在实际工作环境中的稳定性,将决定金属氧化物薄膜晶体管是否能应用于平板显示器件,更是产业化发展的关键问题。

近年来,以氧化物半导体薄膜为有源层的薄膜晶体管的研究引起了广泛的关注,相对于目前的非晶硅和低温多晶硅薄膜晶体管技术,它具有迁移率高,制备温度低,可见光波段透过率高和制作工艺简单等优势,适合高分辨率显示器件的需求。但是,氧化物薄膜晶体管在长时间工作后会出现阈值电压的漂移,严重影响了以薄膜晶体管为器件的电路的可靠性和稳定性,而造成薄膜晶体管阈值电压漂移的重要原因之一就是氧化物有源层与绝缘层界面处的氧空位缺陷,氧空位会俘获沟道中的载流子,造成薄膜晶体管阈值电压的漂移。



技术实现要素:

本发明的目的是提供一种高稳定性氧化物半导体薄膜晶体管及其制备方法,采用掺杂易与氧空位结合的硼(b)或硅(si)元素,减少绝缘层和有源层界面处的氧空位,提高薄膜晶体管的稳定性,从而提高器件的稳定性和可靠性。

为实现上述目的,本发明采用的技术方案是:

一种高稳定性氧化物半导体薄膜晶体管,包括衬底、栅电极、绝缘层、有源层和源漏电极,所述绝缘层为掺杂硼或硅的绝缘膜,所述有源层为掺杂硼或硅的半导体薄膜。

进一步地,所述绝缘膜为al2o3,y2o3,ta2o5或zro2绝缘膜中的一种,所述绝缘膜中硼离子或硅离子与金属离子的摩尔比为5~15:100,所述绝缘膜厚度为50~200纳米。

进一步地,所述半导体薄膜为in2o3,zno,sno2,izo或igzo半导体薄膜中的一种,所述半导体薄膜中硼离子或硅离子与所有金属离子总量的摩尔比为3~8:100,所述半导体薄膜厚度为10~50纳米。

一种高稳定性氧化物半导体薄膜晶体管的制备方法,包括以下步骤:

步骤1:选择重掺杂硅衬底或ito导电玻璃为衬底,重掺杂硅衬底或ito导电玻璃同时作为栅电极;

步骤2:采用磁控溅射法在衬底上制备绝缘层,所述绝缘层为掺杂硼或硅的绝缘膜;

步骤3:采用磁控溅射在绝缘层上制备有源层,所述有源层为掺杂硼或硅的半导体薄膜;

步骤4:采用热蒸发镀膜法在有源层上制备金属al薄膜作为源漏电极。

进一步地,步骤2中所述磁控溅射法中,溅射功率为100~200w,溅射气压为1~10pa,通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为1~2:5,再在退火炉中进行退火,退火温度为300~500℃,退火时间为60~120min。

进一步地,步骤3中所述磁控溅射法中,溅射功率为80~120w,溅射气压为1~10pa;通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为1~3:10,制备温度为室温;在溅射过程中,采用金属掩膜法可以将有源层分割为相互独立的方形图形,避免器件之间的相互串联影响。

进一步地,所述源漏电极电极厚度为40~80nm,沟道长度为50~100μm,沟道宽度为500~1000μm。

本发明的有益效果为:

本发明提供的一种高稳定性氧化物半导体薄膜晶体管及其制备方法,采用硼(或硅)对绝缘层和有源层进行了掺杂改性,降低了薄膜和界面处的氧空位浓度,提高薄膜晶体管的电学稳定性,从而提高器件的稳定性和可靠性。本发明的薄膜晶体管稳定性好,可重复性高,制备条件易控制、工艺简单、电学性质优异、成本低廉、易于大面积批量生产,在新型有源平板显示器件中有广阔的应用前景。

附图说明

图1是本发明一种高稳定性氧化物半导体薄膜晶体管及其制备方法的实施例1的偏压稳定性。

图2是本发明一种高稳定性氧化物半导体薄膜晶体管及其制备方法的实施例2的偏压稳定性。

具体实施方式

下面结合附图和具体实施方式对本发明作进一步说明:

实施例1

一种高稳定性氧化物半导体薄膜晶体管的制备方法,包括以下步骤:

步骤1:选择n型重掺杂硅衬底为衬底,同时作为栅电极;使用前,衬底需经过清洗,清洗过程为:将衬底用氢氟酸浸泡以去除表面氧化层,再放入超声波中依次用丙酮、无水乙醇和去离子水分别清洗15min,以去除衬底上的污染物,然后用氮气吹干;

步骤2:采用磁控溅射法在衬底上制备绝缘层,所述绝缘层为掺杂硼的al2o3绝缘膜;所述al2o3绝缘膜中硼离子与铝离子的摩尔比为10:100,所述al2o3绝缘膜厚度为150纳米,所述磁控溅射法中,溅射功率为120w,溅射气压为2pa,通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为1:5,再在退火炉中进行退火,退火温度为450℃,退火时间为60min;

步骤3:采用磁控溅射在绝缘层上制备有源层,所述有源层为掺杂硼的in2o3半导体薄膜;所述in2o3半导体薄膜中硼离子与铟离子的摩尔比为6:100,所述in2o3半导体薄膜厚度为15纳米。所述磁控溅射法中,溅射功率为100w,溅射气压为2pa;通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为1:10,制备温度为室温;在溅射过程中,采用金属掩膜法可以将有源层分割为相互独立的方形图形,避免器件之间的相互串联影响;

步骤4:采用热蒸发镀膜法在有源层上制备金属al薄膜作为源漏电极;所述源漏电极电极厚度为50nm,沟道长度为100μm,沟道宽度为1000μm。

用半导体特性测试仪对未进行硼掺杂的薄膜晶体管和实施例1中的硼掺杂的薄膜晶体管分别进行了测试,如图1所示,在栅极偏压设置为3v,并持续500秒后,实施例1中的硼掺杂的薄膜晶体管阈值电压漂移仅为0.12v,未进行硼掺杂的薄膜晶体管的阈值电压漂移为0.43v,由此可见实施例1中硼掺杂的薄膜晶体管具有更好的电学稳定性。

实施例2

一种高稳定性氧化物半导体薄膜晶体管的制备方法,包括以下步骤:

步骤1:选择ito导电玻璃为衬底,同时作为栅电极;使用前,衬底需经过清洗,清洗过程为:将衬底放入超声波中依次用丙酮、无水乙醇和去离子水分别清洗15min,以去除衬底上的污染物,然后用氮气吹干;

步骤2:采用磁控溅射法在衬底上制备绝缘层,所述绝缘层为掺杂硅的al2o3绝缘膜;所述al2o3绝缘膜中硅离子与铝离子的摩尔比为10:100,所述al2o3绝缘膜厚度为150纳米,所述磁控溅射法中,溅射功率为120w,溅射气压为2pa,通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为1:5,再在退火炉中进行退火,退火温度为450℃,退火时间为60min;

步骤3:采用磁控溅射在绝缘层上制备有源层,所述有源层为掺杂硅的sno2半导体薄膜;所述sno2半导体薄膜中硅离子与锡离子的摩尔比为6:100,所述sno2半导体薄膜厚度为15纳米。所述磁控溅射法中,溅射功率为100w,溅射气压为2pa;通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为1:10,制备温度为室温;在溅射过程中,采用金属掩膜法可以将有源层分割为相互独立的方形图形,避免器件之间的相互串联影响;

步骤4:采用热蒸发镀膜法在有源层上制备金属al薄膜作为源漏电极;所述源漏电极电极厚度为60nm,沟道长度为50μm,沟道宽度为1000μm。

用半导体特性测试仪对未进行硅掺杂的薄膜晶体管和实施例2中的硅掺杂的薄膜晶体管分别进行了测试,如图2所示,在栅极偏压设置为3v,并持续500秒后,实施例2中的硅掺杂的薄膜晶体管阈值电压漂移仅为0.09v,未进行硅掺杂的薄膜晶体管的阈值电压漂移为0.38v,由此可见实施例2中硅掺杂的薄膜晶体管具有更好的电学稳定性。

实施例3

一种高稳定性氧化物半导体薄膜晶体管的制备方法,包括以下步骤:

步骤1:选择重掺杂硅衬底为衬底,同时作为栅电极;使用前,衬底需经过清洗,清洗过程为:将衬底用氢氟酸浸泡以去除表面氧化层,再放入超声波中依次用丙酮、无水乙醇和去离子水分别清洗15min,以去除衬底上的污染物,然后用氮气吹干;

步骤2:采用磁控溅射法在衬底上制备绝缘层,所述绝缘层为掺杂硼的y2o3绝缘膜;所述y2o3绝缘膜中硼离子与钇离子的摩尔比为5:100,所述y2o3绝缘膜厚度为50纳米,所述磁控溅射法中,溅射功率为100w,溅射气压为10pa,通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为2:5,再在退火炉中进行退火,退火温度为300℃,退火时间为80min;

步骤3:采用磁控溅射在绝缘层上制备有源层,所述有源层为掺杂硼的zno,半导体薄膜;所述zno半导体薄膜中硼离子与锌离子的摩尔比为3:100,所述zno半导体薄膜厚度为10纳米;所述磁控溅射法中,溅射功率为80w,溅射气压为1pa;通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为3:10,制备温度为室温;

步骤4:采用热蒸发镀膜法在有源层上制备金属al薄膜作为源漏电极;所述源漏电极电极厚度为40nm,沟道长度为70μm,沟道宽度为500μm。

实施例4

一种高稳定性氧化物半导体薄膜晶体管的制备方法,包括以下步骤:

步骤1:选择ito导电玻璃为衬底,同时作为栅电极;使用前,衬底需经过清洗,清洗过程为:将衬底放入超声波中依次用丙酮、无水乙醇和去离子水分别清洗15min,以去除衬底上的污染物,然后用氮气吹干;

步骤2:采用磁控溅射法在衬底上制备绝缘层,所述绝缘层为掺杂硅的ta2o5绝缘膜;所述ta2o5绝缘膜中硅离子与钽离子的摩尔比为15:100,所述ta2o5绝缘膜厚度为200纳米,所述磁控溅射法中,溅射功率为200w,溅射气压为1pa,通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为1:5,再在退火炉中进行退火,退火温度为500℃,退火时间为120min;

步骤3:采用磁控溅射在绝缘层上制备有源层,所述有源层为掺杂硅的izo半导体薄膜;所述izo半导体薄膜中硅离子与铟锌离子总量的摩尔比为8:100,所述izo半导体薄膜厚度为50纳米;所述磁控溅射法中,溅射功率为120w,溅射气压为10pa;通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为2:10,制备温度为室温;

步骤4:采用热蒸发镀膜法在有源层上制备金属al薄膜作为源漏电极;所述源漏电极电极厚度为80nm,沟道长度为80μm,沟道宽度为700μm。

实施例5

一种高稳定性氧化物半导体薄膜晶体管的制备方法,包括以下步骤:

步骤1:选择ito导电玻璃为衬底,同时作为栅电极;使用前,衬底需经过清洗,清洗过程为:将衬底放入超声波中依次用丙酮、无水乙醇和去离子水分别清洗15min,以去除衬底上的污染物,然后用氮气吹干;

步骤2:采用磁控溅射法在衬底上制备绝缘层,所述绝缘层为掺杂硼的zro2绝缘膜;所述zro2绝缘膜中硼离子与锆离子的摩尔比为8:100,所述zro2绝缘膜厚度为100纳米,所述磁控溅射法中,溅射功率为150w,溅射气压为5pa,通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为2:5,再在退火炉中进行退火,退火温度为400℃,退火时间为100min;

步骤3:采用磁控溅射在绝缘层上制备有源层,所述有源层为掺杂硼的igzo半导体薄膜;所述igzo半导体薄膜中硼离子与铟镓锌离子总量的摩尔比为5:100,所述igzo半导体薄膜厚度为30纳米;所述磁控溅射法中,溅射功率为90w,溅射气压为5pa;通入气体为氧气与氩气的混合气体,氧气与氩气的流量比为3:10,制备温度为室温;

步骤4:采用热蒸发镀膜法在有源层上制备金属al薄膜作为源漏电极;所述源漏电极电极厚度为70nm,沟道长度为90μm,沟道宽度为800μm。

以上所述之实施例,只是本发明的较佳实施例而已,并非限制本发明实施范围,故凡依本发明专利范围所述技术方案所做的等效变化或修饰,均应包括于本发明申请专利范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1