有机发光显示装置及其制造方法与流程

文档序号:14594461发布日期:2018-06-05 03:29阅读:136来源:国知局

技术领域

本发明涉及一种有机发光显示装置以及制造该有机发光显示装置的方法。更特别地,本发明涉及一种用于提高开口率(aperture ratio)的有机发光显示装置以及制造该有机发光显示装置的方法。



背景技术:

在信息技术时代,用于在屏幕上显示各种信息的图像显示装置是重要的技术,图像显示装置正被发展成更纤薄、重量更轻、更便携和功能性更强的形式。响应于这些需求,通过控制由有机发光层发射的光量来显示图像的有机发光显示器作为能够减小重量和体积的平板显示装置引起了广泛的关注,而重量和体积是阴极射线管的缺点。自发地发射光的有机发光显示器(OLED)具有功耗低、响应速度快、发光效率高、亮度高和视角宽的优点。

有机发光显示器通过以矩阵形式布置的多个像素来显示图像。每个像素包括发光元件和像素电路,像素电路独立地操作发光元件并且包括多个晶体管。

对于有机发光显示器,当由发光元件生成的光被发射到基板的后表面时,在布置有像素电路的区域中,包括在像素电路中的多个导电层由不透明材料制成,因此防止了由发光元件生成的光被发射到外部。因此,传统的有机发光显示器具有与像素电路占据的面积成比例地减小的开口率。此外,近来,对于每个子像素区域需要补偿电路,因此不利地使得难以确保适当的开口率。



技术实现要素:

因此,本发明涉及一种基本上消除了由于现有技术的限制和缺点而引起的一个或更多个问题的有机发光显示装置以及制造该有机发光显示装置的方法。

本发明的目的是提供一种用于提高开口率的有机发光显示装置以及制造该有机发光显示装置的方法。

本发明的另外的优点、目的和特征将在下面的描述中部分地阐述,并且这些优点、目的和特征部分地将在本领域普通技术人员审阅下面的描述时变得明显或可以从本发明的实践中获知。本发明的目的和其他优点可以通过在所记载的描述和所附权利要求书以及附图中特别指出的结构来实现和获得。

为了实现这些目的和其他优点并且根据本发明的目的,如本文所呈现和广泛描述的,提供了一种有机发光显示装置以及制造该有机发光显示装置的方法,该有机发光显示装置包括被布置在基板上的每个子像素区域中的有机发光元件以及在每个子像素区域中与有机发光元件的阳极交叠的多个接触孔,其中,通过多个接触孔中的至少一个接触孔连接的导电层是透明的,因此允许形成接触孔的区域用作发光区域,从而提高了开口率。

应当理解,本发明的上述一般性描述和以下详细描述都是示例性和说明性的,并且旨在提供对所要求保护的本发明的进一步说明。

附图说明

附图被包括以提供对本发明的进一步理解并且被并入本申请并构成本申请的一部分,附图示出了本发明的实施方式,并且与说明书一起用于说明本发明的原理。在附图中:

图1是示出根据本发明的有机发光显示装置的平面图;

图2是示出根据本发明的有机发光显示装置的沿图1中的线I-I’和II-II’的截面图;

图3示出了根据比较例和根据本发明的示例的有机发光显示装置的开口率;以及

图4A至图4I是示出用于制造图2中示出的有机发光显示装置的方法的截面图。

具体实施方式

现在将详细地参照本发明的优选实施方式,其示例在附图中示出。

图1是示出根据本发明的有机发光显示装置的平面图。

图1中示出的根据本发明的有机发光显示装置包括通过扫描线SL、感测控制线SSL、数据线DL、供电线PL和参考线RL之间的交叉而形成的多个子像素区域SPR、SPG、SPB和SPW。

子像素区域包括红色子像素区域SPR、绿色子像素区域SPG、蓝色子像素区域SPB和白色子像素区域SPW。虽然图1按照红色子像素区域SPR、白色子像素区域SPW、蓝色子像素区域SPB和绿色子像素区域SPG的顺序进行布置,但是其布置顺序在每个单位像素中显著不同并根据颜色和配置而改变。根据本发明,除了红色子像素区域SPR、绿色子像素区域SPG和蓝色子像素区域SPB之外,还设置了具有高透射率的白色子像素区域SPW,以便提高发光效率。

红色子像素区域SPR、绿色子像素区域SPG、蓝色子像素区域SPB和白色子像素区域SPW中的每一个均包括发光元件130和用于独立地操作发光元件130的像素驱动电路。像素驱动电路包括开关薄膜晶体管TSW、驱动薄膜晶体管TD、感测薄膜晶体管TSE和存储电容器Cst。

当感测脉冲被提供给感测控制线SSL时,感测薄膜晶体管TSE导通,并且检测驱动薄膜晶体管TD的阈值电压和发光元件130的阈值电压。也就是说,当感测薄膜晶体管TSE导通时,产生至感测薄膜晶体管TSE和参考线RL的电流通道。数据驱动器(未示出)或定时控制器(未示出)检测流过该电流通道的电流,从而检测驱动薄膜晶体管TD的阈值电压和发光元件130的阈值电压。基于检测到的阈值电压,数据电压被补偿,并且补偿后的数据电压被提供给数据线DLR、DLG、DLB和DLW。为此,感测薄膜晶体管TSE包括连接至感测控制线SSL的栅电极、连接至参考线RL的源电极和连接至驱动薄膜晶体管TD的漏电极。参考线RL通过从参考线RL伸出到红色子像素区域SPR、绿色子像素区域SPG、蓝色子像素区域SPB和白色子像素区域SPW的第二跳线190与感测薄膜晶体管TSE的源电极连接。参考线RL介于呈现不同颜色的白色子像素区域SPW和蓝色子像素区域SPB之间,以防止白色子像素和蓝色子像素之间的颜色混合。

当扫描脉冲被提供给扫描线SL时,开关薄膜晶体管TSW导通,并且检测从数据线DLR、DLG、DLB和DLW到存储电容器Cst和驱动薄膜晶体管TD的栅电极的数据信号。如图1和图2所示,开关薄膜晶体管TSW包括连接至扫描线SL的第一栅电极156、连接至数据线DL的第一源电极158、连接至第二栅电极106的第一漏电极160以及第一有源层154。

驱动薄膜晶体管TD根据在存储电容器Cst中充电的驱动电压来控制从供电线PL提供的电流,并且将与驱动电压成比例的电流提供给发光元件130,从而使发光元件130发光。驱动薄膜晶体管TD包括连接至第一漏电极160的第二栅电极106、连接至供电线PL的第二源电极108、连接至发光元件130的第二漏电极110以及第二有源层104。在此,供电线PL通过从供电线PL伸出到红色子像素区域SPR、绿色子像素区域SPG、蓝色子像素区域SPB和白色子像素区域SPW的第一跳线180与驱动薄膜晶体管TD的第二源电极108连接。供电线PL介于呈现不同颜色的绿色子像素区域SPG和红色子像素区域SPR之间,以防止绿色子像素和红色子像素之间的颜色混合。

同时,开关薄膜晶体管TSW的第一栅电极156和驱动薄膜晶体管TD的第二栅电极106经由栅极绝缘图案112的相同图案分别与第一有源层154和第二有源层104交叠。

第一有源层154和第二有源层104分别在栅极绝缘图案112上与第一栅电极156和第二栅电极106交叠,以在第一源电极158和第一漏电极160之间以及在第二源电极108和第二漏电极110之间形成沟道。第一有源层154和第二有源层104中的每一个由包括选自Zn、Cd、Ga、In、Sn、Hf和Zr中的至少一种金属或多晶硅或非晶硅的氧化物半导体形成。

第一源电极158和第二源电极108分别通过穿过层间绝缘膜116的第一源极接触孔164S和第二源极接触孔124S连接至第一有源层154和第二有源层104。第一漏电极160和第二漏电极110分别通过穿过层间绝缘膜116的第一漏极接触孔164D和第二漏极接触孔124D连接至第一有源层154和第二有源层104。

第一漏电极160通过连接电极(未示出)电连接至驱动薄膜晶体管TD的第二栅电极106。第二漏电极110连接至通过穿过层间绝缘膜116的存储接触孔146露出的存储下电极142,并且第二漏电极110通过穿过保护膜118和平坦化层128的像素接触孔120露出并连接至阳极132。第二漏电极110在第二漏电极110与阳极132交叠的区域中包括第二透明导电层172a,并且第二漏电极110在第二漏电极110与第二有源层104交叠的区域中包括第二透明导电层172a和堆叠在第二透明导电层172a上的第二不透明导电层172b。

存储电容器140包括经由层间绝缘膜116彼此交叠的存储下电极142和存储上电极144。在这种情况下,存储下电极142在栅极绝缘图案112上以透明导电层的形式形成,并且存储上电极144在层间绝缘膜116上以透明导电层的形式形成。如此,构成存储电容器140的存储下电极142和存储上电极144在发光区域中被布置为透明导电层,从而提高了开口率。

发光元件130包括阳极132、形成在阳极132上的有机发光层134和形成在有机发光层134上的阴极136。

阳极132电连接至通过穿过保护膜118和平坦化层128的像素接触孔120露出的第二漏电极110。同时,对于底部发射型有机发光显示装置,阳极132由透明导电氧化物(TCO)形成。

有机发光层134通过将空穴相关层、发光层和电子相关层按该顺序或按相反顺序堆叠在阳极132上来形成。

如图2所示,形成堤部138以便露出布置在发光区域中的阳极132。

阴极136形成在有机发光层134和堤部138的上表面和侧表面上,使得阴极136经由有机发光层134面向阳极132。对于底部发射型有机发光显示装置,阴极136具有例如铟锡氧化物(ITO)或铟锌氧化物(IZO)的透明导电层以及包括铝(Al)、银(Ag)、APC(Ag;Pb;Cu)等的金属层堆叠的结构。

同时,第一栅电极156和第二栅电极106、扫描线SL和感测控制线SSL中的至少一个包括第一透明导电层171a和形成在第一透明导电层171a上的第一不透明导电层171b。存储下电极142以及第一跳线180和第二跳线190中的至少一个包括第一透明导电层。

此外,第一源电极158和第二源电极108、第一漏电极160、第二漏电极110的与第二有源层104交叠的区域、数据线DLR、DLG、DLB和DLW、供电线PL和参考线RL中的至少一个包括第二透明导电层172a和形成在第二透明导电层172a上的第二不透明导电层172b。

第二漏电极110的与阳极132交叠的区域和存储上电极144包括第二透明导电层172a。

在此,第一透明导电层171a和第二透明导电层172a包括例如ITO的透明导电材料,并且第一不透明导电层171b和第二不透明导电层172b可以是包括以下中的任一种的单层或多层:钼(Mo)、铝(Al)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)和铜(Cu)或其合金,但是本发明不限于此。

特别地,与阳极132交叠的存储下电极142和第二漏电极110在形成存储接触孔146的区域中分别形成为透明导电层171a和透明导电层172a。在这种情况下,形成存储接触孔146的区域变得透明,从而将由有机发光层134生成的光通过形成存储接触孔146的区域发射到基板101的底部。因此,本发明利用布置有阳极132的发光区域以及形成存储接触孔146的区域作为发光区域,从而提高了开口率。布置在形成存储接触孔146的区域中以及与像素驱动电路中布置的接触孔对应的区域中的电极形成为透明导电层172a。例如,布置在形成将第一漏电极160连接至第二栅电极106的接触孔的区域中的电极形成为透明导电层172a,从而提高了开口率。

此外,将驱动薄膜晶体管TD的第二源电极108连接至供电线PL的第一跳线180以与栅极绝缘图案112相同的图案形成在栅极绝缘图案112上。第一跳线180通过第一电力接触孔182露出,并且电连接至供电线PL。第一跳线180与扫描线SL平行地从供电线PL朝向子像素区域伸出,以便将供电线PL连接至驱动薄膜晶体管TD的第二源电极108。在这种情况下,第一跳线180在子像素区域中形成为第一透明导电层171a。在这种情况下,第一跳线180变得透明,从而将由有机发光层134生成的光通过第一跳线180发射到基板101的底部。因此,本发明可以利用在子像素区域中形成第一跳线180的区域作为发光区域,从而提高开口率。

此外,将感测薄膜晶体管TSE的源电极连接至参考线RL的第二跳线190以与栅极绝缘图案112相同的图案形成在栅极绝缘图案112上。第二跳线190通过第二电力接触孔192露出,并且电连接至参考线RL。第二跳线190与扫描线SL平行地从参考线RL朝向每个子像素区域伸出,以便将感测薄膜晶体管TSE的源电极连接至参考线RL。在这种情况下,第二跳线190在每个子像素区域中形成为第一透明导电层171a。在这种情况下,第二跳线190变得透明,从而将由有机发光层134生成的光通过第二跳线190发射到基板101的底部。因此,本发明可以利用在子像素区域中形成第二跳线190的区域作为发光区域,从而提高开口率。

图3示出了根据比较例和根据本发明的示例的有机发光显示装置的开口率。

在图3中,示例1涉及存储接触孔146的区域也透明的有机发光显示器,这是因为形成为第一透明导电层171a的存储下电极142通过存储接触孔146与形成为第二透明导电层172a的第二漏电极110连接,示例2涉及存储接触孔146的区域以及第一跳线180透明的有机发光显示器,并且示例3涉及存储接触孔146的区域以及第一跳线180和第二跳线190透明的有机发光显示装置,并且比较例涉及存储接触孔区域以及第一跳线和第二跳线不透明的传统有机发光显示装置。

从图3中可以看出,示例1至示例3呈现出相比于比较例更好的开口率。特别地,与存储接触孔区域以及第一跳线和第二跳线不透明的传统有机发光显示装置的比较例相比,存储接触孔146的区域以及第一跳线180和第二条线190都透明的示例3呈现出开口率增加了高达7%。

图4A至图4I是示出制造图2中示出的有机发光显示装置的方法的截面图。

参照图4A,在基板101上形成遮光层102。

更具体地,通过在基板101的整个表面上沉积遮光材料并通过光刻过程和蚀刻过程对遮光材料进行图案化来形成遮光层102。

参照图4B,在设置有遮光层102的基板101上形成缓冲膜114,并且在缓冲膜114上形成第一有源层154和第二有源层104。

更具体地,通过将无机绝缘材料例如SiOx或SiNx沉积在设置有遮光层102的基板101的整个表面上而形成具有单层或多层结构的缓冲膜114。然后,通过例如低压化学气相沉积(LPCVD)或等离子增强化学气相沉积(PECVD)的方法在设置有缓冲膜114的基板101上形成非晶硅薄膜。然后,将非晶硅薄膜结晶成多晶硅薄膜。此外,通过光刻过程和蚀刻过程对多晶硅薄膜进行图案化以形成第一有源层154和第二有源层104。

参照图4C,以相同的线宽在设置有第一有源层154和第二有源层104的基板101上形成第一栅电极156、第二栅电极106、存储下电极142、第一跳线180、第二跳线190以及栅极绝缘图案112。

更具体地,在设置有第一有源层154和第二有源层104的基板101上形成栅极绝缘膜,并且通过诸如溅射的沉积方法在栅极绝缘膜上顺序形成第一透明导电层171a和第一不透明导电层171b。使用无机绝缘材料例如SiOx或SiNx形成栅极绝缘膜。使用透明导电材料例如ITO形成第一透明导电层171a。使用金属材料例如Mo、Ti、Cu、AlNd、Al、Cr或其合金将第一不透明导电层171b形成为单层,或者使用同样的金属材料将第一不透明导电层171b形成为多层。然后,通过使用半色调掩模的光刻过程形成多阶光刻胶图案(multi-step photoresist pattern)。通过使用这种多阶光刻胶图案作为掩模的蚀刻过程,第一透明导电层171a、第一不透明导电层171b和栅极绝缘膜同时被图案化,以便以相同的图案形成第一栅电极156、第二栅电极106、存储下电极142、第一跳线180、第二跳线190以及栅极绝缘图案112。在这种情况下,通过顺序堆叠第一透明导电层171a和第一不透明导电层171b来形成第一栅电极156、第二栅电极106、存储下电极142、第一跳线180和第二跳线190中的每一个。然后,将具有多阶结构的光刻胶图案灰化以露出存储下电极142、第一跳线180和第二跳线190中的每一个的第一不透明导电层171b。通过使用灰化的光刻胶图案作为掩模的蚀刻过程去除存储下电极142的露出的第一不透明导电层171b以及第一跳线180和第二跳线190的露出的第一不透明导电层171b,从而形成具有第一透明导电层171a的存储下电极142、第一跳线180和第二跳线190。

参照图4D,在设置有第一栅电极156和第二栅电极106、存储下电极142以及第一跳线180和第二跳线190的基板101上形成包括第一源极接触孔164S和第二源极接触孔124S、第一漏极接触孔164D和第二漏极接触孔124D、第一电力接触孔182和第二电力接触孔192以及存储接触孔146的层间绝缘膜116。

更具体地,通过沉积方法例如PECVD在设置有第一栅电极156和第二栅电极106、存储下电极142以及第一跳线180和第二跳线190的基板101上形成层间绝缘膜116,然后,通过光刻过程和蚀刻过程对层间绝缘膜116进行图案化,以形成第一源极接触孔164S和第二源极接触孔124S、第一漏极接触孔164D和第二漏极接触孔124D、第一电力接触孔182和第二电力接触孔192以及存储接触孔146。

参照图4E,在设置有第一源极接触孔164S和第二源极接触孔124S、第一漏极接触孔164D和第二漏极接触孔124D、第一电力接触孔182和第二电力接触孔192以及存储接触孔146的层间绝缘膜116上形成第一源电极158和第二源电极108、第一漏电极160和第二漏电极110、存储上电极144、供电线PL和参考线RL。

更具体地,通过诸如溅射的沉积方法在设置有第一源极接触孔164S和第二源极接触孔124S、第一漏极接触孔164D和第二漏极接触孔124D、第一电力接触孔182和第二电力接触孔192以及存储接触孔146的层间绝缘膜116上顺序沉积第二透明导电层172a和第二不透明导电层172b。使用透明导电材料例如ITO形成第二透明导电层172a。使用金属例如Mo、Ti、Cu、AlNd、Al、Cr或其合金将第二不透明导电层172b形成为单层,或者使用同样的金属将第二不透明导电层172b形成为多层。然后,通过使用半色调掩模的光刻过程形成多阶光刻胶图案。通过使用这种多阶光刻胶图案作为掩模的蚀刻过程,第二透明导电层172a和第二不透明导电层172b同时被图案化,以形成第一源电极158和第二源电极108、第一漏电极160和第二漏电极110、存储上电极144、供电线PL和参考线RL。在这种情况下,通过顺序堆叠第二透明导电层172a和第二不透明导电层172b来形成第一源电极158和第二源电极108、第一漏电极160和第二漏电极110、存储上电极144、供电线PL和参考线RL。然后,将具有多阶结构的光刻胶图案灰化以露出第二漏电极110的与存储下电极142交叠的区域和存储上电极144的第二不透明导电层172b。通过使用灰化的光刻胶图案作为掩模的蚀刻过程去除第二漏电极110的与存储下电极142交叠的区域和存储上电极144的露出的第二不透明导电层172b。因此,第二漏电极110的与存储下电极142交叠的区域和存储上电极144中的每一个形成为第二透明导电层172a。

参照图4F,在设置有第一源电极158和第二源电极108、第一漏电极160和第二漏电极110、存储上电极144、供电线PL和参考线RL的层间绝缘膜116上形成保护膜118,并且在保护膜118上形成滤色器260。滤色器被形成为与发光区域交叠,并且覆盖开关薄膜晶体管TSW和驱动薄膜晶体管TD中的至少一个。

更具体地,在设置有第一源电极158和第二源电极108、第一漏电极160和第二漏电极110、存储上电极144、供电线PL和参考线RL的层间绝缘膜116上形成保护膜118。使用无机绝缘材料如SiOx或SiNx形成保护膜118。然后,施加颜色树脂(color resin),然后通过光刻过程对颜色树脂进行图案化以形成滤色器260。

参照图4G,在设置有滤色器260的基板101上形成具有像素接触孔120的平坦化层128。

更具体地,通过在设置有滤色器260的基板101的整个表面上施加有机膜例如光敏丙烯酸树脂(photoacrylic resin)来形成平坦化层128。然后,通过光刻过程对平坦化层128进行图案化以形成像素接触孔120。

参照图4H,在具有像素接触孔120的平坦化层128上形成阳极132。

更具体地,在具有像素接触孔120的平坦化层128上堆叠透明导电层。然后,通过光刻过程和蚀刻过程对透明导电层进行图案化以形成阳极132。

参照图4I,在设置有阳极132的基板101上顺序地形成堤部138、有机发光层134和阴极136。

更具体地,在设置有阳极132的基板101的整个表面上施加有机膜例如光敏丙烯酸树脂。然后,通过光刻过程对有机膜进行图案化以形成堤部138。然后,在设置有堤部138的基板101的整个表面上施加呈现白色的有机发光层134,并且在设置有有机发光层134的基板101上形成阴极136。

如此,根据本发明,形成存储接触孔146的区域和形成第一跳线180和第二跳线190的区域中的至少一个区域变得透明。因此,本发明基于提高的开口率而有利于高分辨率,这是因为布置阳极132的发光区域以及透明区域可以被用作发光区域。

同时,虽然本发明作为示例提出了用与第一栅电极156和第二栅电极106的掩模过程相同的掩模过程同时形成第一跳线180和第二跳线190的情况,但是第一跳线180和第二跳线190可以通过与遮光层102中的掩模过程相同的掩模过程形成,或者第一跳线180可以通过将供电线PL的第二透明导电层172a延伸到不具有第一电力接触孔182的发光区域中而形成,或者第二跳线190可以通过将参考线RL的第二透明导电层172a延伸到不具有第二电力接触孔192的发光区域中而形成。

此外,对本领域技术人员明显的是,在不脱离本发明的精神或范围的情况下,可以对本发明进行各种修改和变型。因此,本发明旨在覆盖本发明的修改和变型,只要它们在所附权利要求及其等同内容的范围内即可。例如,可以以修改形式来实现实施方式中具体示出的各个部件。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1