本申请基于2016年5月20日提出的日本专利申请第2016-101245号主张优先权,这里引用其记载内容。
本发明涉及两面散热构造的半导体装置。
背景技术:
如在专利文献1中公开的那样,已知有构成上臂电路的上臂芯片被配置在一对上臂板之间、构成下臂的下臂芯片被配置在一对下臂板之间、上臂电路和下臂电路经由接头部连接而成的两面散热构造的半导体装置。在该半导体装置中,在上臂板之间配置有一个上臂芯片,在下臂板之间配置有一个下臂芯片。
现有技术文献
专利文献
专利文献1:日本特开2016-4941号公报
发明概要
在电力控制的用途下,有想要较大地得到输出(电流容量)的要求,例如有采用将半导体芯片并联连接的结构的情况。但是,如果采用并联连接构造,则电流偏差及栅极的异常振荡成为问题。
通过使电路配置对称,能够抑制电流偏差。在将例如2个上臂芯片并联连接在一对上臂板之间的情况下,可以考虑这样的结构,即:将上臂芯片在与接头部的延伸设置方向正交的方向上排列,并且,使信号端子的延伸设置方向为上臂芯片的排列方向且相互相反的方向。但是,由于同一臂的信号端子在相反的方向上延伸设置,所以信号端子与外部(设备)的连接构造变得复杂。
此外,通过在栅极串联地插入铁氧体磁珠或栅极电阻,能够抑制异常振荡。但是,根据这样的对策,开关损耗会增加。
技术实现要素:
本发明的目的在于,提供能够使信号端子与外部的连接构造简化、并且抑制电流偏差及栅极的异常振荡的半导体装置。
根据本发明的一根据技术方案,半导体装置具备:一对上臂板及一对下臂板,分别作为一对散热板;作为半导体芯片的多个上臂芯片以及与上述上臂芯片相同数量的下臂芯片,上述半导体芯片形成有开关元件,并具有在一面及在板厚方向上与上述一面相反的背面上分别形成的主电极、和在背面上在与主电极不同的位置形成的信号用的焊盘,一面的主电极电连接于一对散热板的一方,背面的主电极电连接于散热板的另一方,上述上臂芯片在与板厚方向正交的第1方向上排列配置,并且在一对上臂板之间相互并联连接,与一对上臂板一起构成上臂电路,上述下臂芯片在与板厚方向正交的第2方向上排列配置,并且在一对下臂板之间相互并联连接,与一对下臂板一起构成下臂电路;信号端子,电连接于对应的半导体芯片的焊盘;接头部,将配置在上臂芯片的低电位侧的上臂板与配置在下臂芯片的高电位侧的下臂板电连接;以及封固树脂体,将一对上臂板的至少一部分、一对下臂板的至少一部分、半导体芯片、接头部、以及信号端子的一部分一体地封固;在与第1方向及板厚方向这两个方向正交的方向上,各上臂芯片的焊盘相对于背面的主电极分别形成在相同侧,并且,与各上臂芯片对应的信号端子分别在相同的方向上延伸设置;在与第2方向及板厚方向这两个方向正交的方向上,各下臂芯片的焊盘相对于背面的主电极分别形成在相同侧,并且,与各下臂芯片对应的信号端子分别在相同的方向上延伸设置;接头部与上臂板中的第1方向上的距下臂板较近侧的端部相连,并且,与下臂板中的第2方向上的距上臂板较近侧的端部相连;在一对上臂板中将多个上臂芯片并联连接的并联连接部的电感以及在一对下臂板中将多个下臂芯片并联连接的并联连接部的电感分别小于包括接头部且将上臂电路与下臂电路串联连接的串联连接部的电感。
由此,在并联连接的多个半导体芯片中,焊盘相对于主电极形成在相同侧,对应的信号端子彼此在同方向上延伸设置。因而,能够使信号端子与外部的连接构造简化。
此外,各并联连接部的电感比包括接头部的串联连接部的电感小。例如如果设串联连接部的电感为规定值,则与使并联连接部的电感为串联连接部的电感以上的结构相比,能够减小并联连接部的电感。由此,能够采用上述的焊盘的配置并且抑制电流偏差。此外,通过满足上述的电感的大小关系,能够抑制栅极的异常振荡。由于可以不插入栅极电阻等,所以能够抑制开关损耗的增大并且抑制栅极的异常振荡。关于异常振荡抑制的效果,通过实验进行了确认。
附图说明
关于本发明的上述目的及其他目的、特征及优点,一边参照附图一边通过下述详细的记述会变得更明确。
图1是表示应用了第1实施方式的半导体装置的电力变换装置的概略结构的图。
图2是表示第1实施方式的半导体装置的概略结构的平面图。
图3是对于图2所示的半导体装置省略了封固树脂体的图。
图4是沿着图2的iv-iv线的剖视图。
图5是上臂电路和下臂电路的等价电路图。
图6是表示比较例的信号波形的图。
图7是关于第1实施方式的半导体装置表示信号波形的图。
图8是在第2实施方式的半导体装置中表示第1接头部周边的剖视图。
图9是在第3实施方式的半导体装置中表示第1接头部周边的剖视图。
图10是表示第1变形例的平面图,与图3对应。
图11是表示第2变形例的平面图。
图12是表示第3变形例的剖视图,与图4对应。
具体实施方式
参照附图说明多个实施方式。在多个实施方式中,对于在功能上及/或构造上对应的部分赋予相同的参照标号。以下,将半导体芯片的厚度方向表示为z方向,将与z方向正交、上臂10h侧的半导体芯片的排列方向表示为x方向。此外,将与z方向及x方向这两个方向正交的方向表示为y方向。只要没有特别声明,就将沿着由上述x方向及y方向规定的xy面的形状设为平面形状。z方向相当于板厚方向,x方向相当于第1方向。
(第1实施方式)
首先,基于图1对应用了半导体装置的电力变换装置的一例进行说明。
图1所示的电力变换装置1构成为,将从直流电源2(电池)供给的直流电压变换为三相交流,向三相交流方式的马达3输出。这样的电力变换装置1例如被搭载在电动汽车或混合动力汽车中。另外,电力变换装置1还能够将由马达3发出的电力变换为直流而向直流电源2充电。图1所示的标号4是平滑电容器。
电力变换装置1具有三相逆变器。三相逆变器具有三相的设置在高电位电源线5与低电位电源线6之间的上下臂,高电位电源线5连接于直流电源2的正极(高电位侧),低电位电源线6连接于负极(低电位侧)。并且,各相的上下臂分别由半导体装置10构成。即,由一个半导体装置10构成一相的上下臂。上下臂由上臂10h和下臂10l串联连接而成。上下臂的输出端子连接于向马达3的输出线7。上臂10h相当于上臂电路,下臂10l相当于下臂电路。
另外,也可以是,电力变换装置1除了上述的三相逆变器以外,还具有将从直流电源2供给的直流电压升压的升压变换器、对构成三相逆变器及升压变换器的开关元件的动作进行控制的栅极驱动电路等。
接着,基于图2~图4对半导体装置10进行说明。
如图2~图4所示,半导体装置10具备封固树脂体11、半导体芯片12、热沉14、端子16、热沉18、接头部20、主端子21、22、23及信号端子24。以下,标号末尾的h表示是上臂10h侧的要素,末尾的l表示是下臂10l侧的要素。对于要素的一部分,为了使上臂10h、下臂10l明确而对末尾赋予h、l,关于另一部分,在上臂10h和下臂10l中设为共通标号。
封固树脂体11例如由环氧类树脂构成。封固树脂体11例如通过传递模塑(transfermold)法成形。封固树脂体11具有与z方向正交的一面11a、与一面11a相反的背面11b、以及将一面11a与背面11b相连的侧面。一面11a及背面11b例如为平坦面。封固树脂体11具有信号端子24突出的侧面11c。
半导体芯片12通过在硅或碳化硅等的半导体基板上作为开关元件而形成绝缘栅双极型晶体管(igbt)或mosfet等功率晶体管而成。在本实施方式中,与n沟道型的igbt一起,形成有反并联连接于igbt的续流二极管(fwd)。即,在半导体芯片12,形成有rc(reverseconducting:逆导)-igbt。半导体芯片12在平面视下呈大致矩形。
igbt及fwd呈纵型构造,以使电流在z方向上流动。在半导体芯片12的板厚方向即z方向上,在半导体芯片12的一面形成有集电极电极13a,在与一面相反的背面形成有发射极电极13b。集电极电极13a也兼作fwd的阴极电极,发射极电极13b也兼作fwd的阳极电极。集电极电极13a及发射极电极13b相当于主电极。
半导体芯片12具有上臂10h侧的半导体芯片120h、121h和下臂10l侧的半导体芯片120l、121l。半导体芯片120h、121h相当于上臂芯片,半导体芯片120l、121l相当于下臂芯片。半导体芯片120h、120l、121h、121l呈相互大致相同的平面形状,具体而言在平面视下呈大致矩形,并且具有相互大致相同的大小和大致相同的厚度。半导体芯片120h、120l、121h、121l为相互相同的结构。上臂10h侧的半导体芯片120h、121h配置为,各自的集电极电极13a为z方向上的相同侧,各自的发射极电极13b为z方向上的相同侧。半导体芯片120h、121h在z方向上位于大致相同的高度,并且在x方向上横向排列而配置。
下臂10l侧的半导体芯片120l、121l配置为,各自的集电极电极13a为z方向上的相同侧,各自的发射极电极13b为z方向上的相同侧。半导体芯片120l、121l也在z方向上位于大致相同的高度,并且在x方向上横向排列而配置。半导体芯片120l、121l的排列方向相当于第2方向。在本实施方式中,第2方向为与第1方向相同的x方向。此外,半导体芯片120h、120l、121h、121l沿着x方向以一列配置。
在半导体芯片12的背面即发射极电极形成面,还形成有作为信号用的电极的焊盘(pad)13c。焊盘13c形成在与发射极电极13b不同的位置。焊盘13c与发射极电极13b在电气上绝缘。焊盘13c在y方向上形成在与发射极电极13b的形成区域相反侧的端部。
在本实施方式中,各半导体芯片12具有5个焊盘13c。具体而言,作为5个焊盘13c,具有栅极电极用、检测发射极电极13b的电位的开尔文发射极(kelvinemitter)用、电流感测用、检测半导体芯片12的温度的温度传感器(感温二极管)的阳极电位用、该温度传感器的阴极电位用的焊盘。在平面视大致矩形状的半导体芯片12中,5个焊盘13c一并形成在y方向的一端侧,并且在x方向上排列而形成。
半导体芯片12在与发射极电极13b和焊盘13c的排列方向及作为板厚方向的z方向这两个方向正交的方向上排列配置。在本实施方式中,关于全部的半导体芯片12,发射极电极13b和焊盘13c的排列方向为y方向。因此,全部的半导体芯片12在x方向上排列而配置。
热沉14起到将对应的半导体芯片12的热向半导体装置10的外部散热的功能,并且还起到作为布线的功能。因此,为了确保导热性及导电性,至少使用金属材料形成。热沉14也称作散热板。在本实施方式中,热沉14以设置为,在从z方向的投影视下,将对应的半导体芯片12包括在内。热沉14在z方向上相对于对应的半导体芯片12配置在封固树脂体11的一面11a侧。
热沉14经由焊料15而与对应的半导体芯片12的集电极电极13a电连接。热沉14的大部分被封固树脂体11覆盖。热沉14的表面中的与半导体芯片12相反的散热面14a从封固树脂体11露出。散热面14a与一面11a大致共面。热沉14的表面中的除了与焊料15连接的连接部及散热面14a以外的部分被封固树脂体11覆盖。
在本实施方式中,热沉14具有上臂10h侧的热沉14h和下臂10l侧的热沉14l。在热沉14h的与散热面14a相反的面,分别经由焊料15连接着半导体芯片120h、121h的集电极电极13a。此外,在热沉14l的与散热面14a相反的面,分别经由焊料15连接着半导体芯片120l、121l的集电极电极13a。热沉14h、14l在x方向上排列而配置,并且在z方向上配置在大致相同的位置。热沉14h、14l的散热面14a从封固树脂体11的一面11a露出,并且分别在x方向上排列。
端子16夹在对应的半导体芯片12与热沉18之间。端子16由于位于半导体芯片12与热沉18之间的导热、导电路径的中途,所以为了确保导热性及导电性,至少使用金属材料形成。端子16与发射极电极13b对置配置,端子16经由焊料17而与发射极电极13b电连接。端子16按每个半导体芯片12而设置。
热沉18也与热沉14同样,起到将对应的半导体芯片12的热向半导体装置10的外部散热的功能,并且也起到作为布线的功能。热沉18也称作散热板。在本实施方式中,热沉18设置为,在从z方向的投影视下,将对应的半导体芯片12包括在内。热沉18在z方向上相对于对应的半导体芯片12配置在封固树脂体11的背面11b侧。
热沉18与对应的半导体芯片12的发射极电极13b电连接。具体而言,经由焊料17、端子16及焊料19而与发射极电极13b电连接。热沉18的大部分被封固树脂体11覆盖。热沉18的表面中的与半导体芯片12相反的散热面18a从封固树脂体11露出。散热面18a与背面11b大致共面。热沉18的表面中的除了与焊料19连接的连接部及散热面18a以外的部分被封固树脂体11覆盖。
在本实施方式中,热沉18具有上臂10h侧的热沉18h和下臂10l侧的热沉18l。在热沉18h的与散热面18a相反的面,经由焊料19连接着与半导体芯片120h、121h对应的端子16。此外,在热沉18l的与散热面18a相反的面,经由焊料19连接着与半导体芯片120l、121l对应的端子16。热沉18h、18l在x方向上排列配置,并且在z方向上配置在大致相同的位置。并且,热沉18h、18l的散热面18a从封固树脂体11的背面11b露出,并且分别在x方向上排列。
这样,上臂10h侧的半导体芯片120h、121h在热沉14h、18h之间相互并联连接。因而,热沉14h、18h相当于一对上臂板。同样,下臂10l侧的半导体芯片120l、121l在热沉14l、18l之间相互并联连接。因而,热沉14l、18l相当于一对下臂板。
接头部20将在半导体芯片120h、121h的发射极电极13b侧配置的热沉18h与在半导体芯片120l、121l的集电极电极13a侧配置的热沉14l电连接。换言之,接头部20将在半导体芯片120h、121h的低电位侧配置的上臂10h侧的热沉18h与在半导体芯片120l、121l的高电位侧配置的下臂10l侧的热沉14l电连接。
接头部20的一端与热沉18h的在半导体芯片120h、121h的排列方向上距热沉14l较近的一侧的端部附近相连。接头部20的另一端与热沉14l的在半导体芯片120l、121l的排列方向上距热沉18h较近的一侧的端部附近相连。
在本实施方式中,全部的半导体芯片12沿着x方向以一列配置。此外,热沉14l、18h也在从z方向的投影视下在x方向上排列配置。接头部20在xy平面视下在x方向上延伸设置。接头部20的一端与热沉18h中的热沉14l侧的侧面18b相连。接头部20的另一端与热沉14l中的热沉18h侧的侧面14b相连。
更详细地讲,接头部20具有与热沉18h相连的第1接头部200以及与热沉14l相连的第2接头部201。第1接头部200通过对同一金属板进行加工而与热沉18h一体地设置。第1接头部200设置得比热沉18h薄,以被封固树脂体11覆盖。第1接头部200以与热沉18h中的半导体芯片12侧的面大致共面的方式与热沉18h相连。第1接头部200呈薄板状,从热沉18h的侧面18b在x方向上延伸。
第2接头部201通过对同一金属板进行加工而与热沉14l一体地设置。第2接头部201设置得比热沉14l薄,以被封固树脂体11覆盖。第2接头部201与热沉14l中的半导体芯片12侧的面大致共面地相连。第2接头部201从热沉14l的侧面14b朝向热沉18h延伸设置。从z方向来看,第2接头部201在x方向上延伸设置。在本实施方式中,如图4所示,第2接头部201具有2处弯曲部。在从z方向的投影视下,第2接头部201的前端部分与第1接头部200重叠。并且,第2接头部201与第1接头部200经由焊料202连接。
主端子21是用来将半导体装置10与高电位电源线5连接的外部连接端子。主端子21也称作高电位电源端子、p端子。主端子21与热沉14h相连,从热沉14h在y方向上延伸设置。在本实施方式中,通过对同一金属板进行加工,主端子21和热沉14h一体地设置。主端子21与热沉14h中的y方向的一端相连。主端子21具有与热沉14h大致相同的厚度。主端子21的一面与热沉14h的散热面14a大致共面地相连,与散热面14a一起从封固树脂体11的一面11a露出。
主端子22是用来将半导体装置10与马达3的输出线7连接的外部连接端子。主端子22也称作输出端子、o端子。主端子22与热沉14l相连,从热沉14l在y方向上且与主端子21相同的一侧延伸设置。在本实施方式中,通过对同一金属板进行加工,主端子22与热沉14l一体地设置。主端子22与热沉14l的y方向的一端相连。主端子22具有与热沉14l大致相同的厚度。主端子22的一面与热沉14l的散热面14a大致共面地相连,与散热面14a一起从封固树脂体11的一面11a露出。即,热沉14h、14l的散热面14a以及主端子21、22从一面11a露出。
主端子23是用来将半导体装置10与低电位电源线6连接的外部连接端子。主端子23也称作低电位电源端子、n端子。主端子23与热沉18l相连,从热沉18l在y方向上且与主端子21相同的一侧延伸设置。在本实施方式中,通过对同一金属板进行加工,主端子23与热沉18l一体地设置。主端子23与热沉18l的y方向的一端相连。主端子23具有与热沉18l大致相同的厚度。主端子23的一面与热沉18l的散热面18a大致共面地相连,与散热面18a一起从封固树脂体11的背面11b露出。即,热沉18h、18l的散热面18a以及主端子23从背面11b露出。
主端子23的一部分在从z方向的投影视下与主端子21重叠。即,在z方向上,形成有主端子21(p端子)和主端子23(n端子)的层叠构造。具体而言,主端子21从热沉14h的y方向的一侧面的、距下臂10l较近侧的部分延伸设置。换言之,从距半导体芯片120h、121h中的半导体芯片120h较近侧延伸设置。主端子21以前端在x方向上向下臂10l接近的方式在y方向上延伸设置。即,主端子21斜向地延伸设置。
此外,主端子23从热沉18l的y方向的一侧面的、距上臂10h较近侧的部分延伸设置。换言之,从距半导体芯片120l、121l中的半导体芯片120l较近侧延伸设置。主端子23以前端在x方向上向上臂10h接近的方式在y方向上延伸设置。即,主端子23斜向地延伸设置。并且,在从z方向的投影视下,主端子21、23的前端部分重叠。
信号端子24经由键合线25电连接于对应的半导体芯片12的焊盘13c。在本实施方式中,采用铝类键合线25。信号端子24在封固树脂体11的内部同键合线25连接,从封固树脂体11的侧面11c向外部突出。
在本实施方式中,信号端子24具有上臂10h侧的信号端子24h和下臂10l侧的信号端子24l。信号端子24h与对应的半导体芯片120h、121h的焊盘13c电连接。信号端子24l与对应的半导体芯片120l、121l的焊盘13c电连接。与半导体芯片120h、121h分别对应的信号端子24h在相同方向上延伸设置。此外,与半导体芯片120l、121l分别对应的信号端子24l在相同方向上延伸设置。
更详细地讲,全部的半导体芯片12沿着x方向以一列配置。此外,各半导体芯片12的焊盘13c配置在y方向的相同侧。因而,信号端子24h及信号端子24l在相同方向上延伸设置。信号端子24h及信号端子24l在y方向的与主端子21、22、23相对于热沉14h、14l、18h的延伸设置方向相反的方向上延伸设置。
在如以上那样构成的半导体装置10中,通过封固树脂体11,将半导体芯片12、热沉14的一部分、端子16、热沉18的一部分、主端子21、22、23的一部分以及信号端子24的一部分一体地封固。在封固树脂体11中,将半导体芯片120h、120l、121h、121l封固。即,将构成一相的上下臂的一个上臂10h和一个下臂10l封固。因此,半导体装置10也称作2in1封装。
此外,热沉14、18被与封固树脂体11一起切削加工。一面11a及散热面14a为切削面。热沉14h、14l的散热面14a位于同一面内,并且与封固树脂体11的一面11a大致共面。同样,背面11b及散热面18a为切削面。热沉18h、18l的散热面18a位于同一面内,并且与封固树脂体11的背面11b大致共面。这样,半导体装置10呈散热面14a、18a都从封固树脂体11露出的两面散热构造。
在本实施方式中,如上述那样,主端子21、22的与散热面14a相连的一面也为切削面。此外,主端子23的与散热面18a相连的一面也为切削面。这样的半导体装置10能够通过周知的制造方法形成。
接着,基于图3~图5,对上臂10h、下臂10l以及将上臂10h与下臂10l串联连接的串联连接部26的详细情况进行说明。
如上述那样,热沉14h、14l在x方向上排列配置。此外,半导体芯片120h、120l、121h、121l沿着x方向以一列配置。在x方向上,以半导体芯片121h、半导体芯片120h、半导体芯片120l、半导体芯片121l的顺序排列配置。接头部20在xy平面视下在x方向上延伸,将热沉18h的侧面18b与热沉14l的侧面14b连结。
上臂10h具备作为一对上臂板的热沉14h、18h、半导体芯片120h、121h而构成。在x方向上,半导体芯片120h为距接头部20较近侧,半导体芯片121h为距接头部20较远侧。即,在x方向上,半导体芯片120h和半导体芯片121h距接头部20的距离不同。在热沉14h中,经由焊料15的半导体芯片120h的连接部分与经由焊料15的半导体芯片121h的连接部分之间的部分成为集电极电极13a侧的并联连接部140h。同样,在热沉18h中,经由焊料19的半导体芯片120h的连接部分与经由焊料19的半导体芯片121h的连接部分之间的部分成为发射极电极13b侧的并联连接部180h。在图4中,被虚线夹着的部分是并联连接部140h、180h。
上臂10h除了上述以外还具备焊料15、17、19及端子16。但是,如上述那样,对于半导体芯片120h和半导体芯片121h而言,一对热沉14h、18h间的z方向的连接构造(层叠构造)相同。
下臂10l具备作为一对下臂板的热沉14l、18l、半导体芯片120l、121l而构成。在x方向上,半导体芯片120l为距接头部20较近侧,半导体芯片121l为距接头部20较远侧。即,在x方向上,半导体芯片120l和半导体芯片121l距接头部20的距离不同。在热沉14l中,经由焊料15的半导体芯片120l的连接部分与经由焊料15的半导体芯片121l的连接部分之间的部分为集电极电极13a侧的并联连接部140l。同样,在热沉18l中,经由焊料19的半导体芯片120l的连接部分与经由焊料19的半导体芯片121l的连接部分之间的部分为发射极电极13b侧的并联连接部180l。关于并联连接部180l,也为与并联连接部180h相同的结构。在图4中,被虚线夹着的部分是并联连接部140l、180l。
下臂10l除了上述以外还具备焊料15、17、19及端子16。但是,如上述那样,对于半导体芯片120l和半导体芯片121l而言,一对热沉14l、18l间的z方向的连接构造(层叠构造)相同。
此外,在x方向上,在接头部20与半导体芯片120h之间有规定的间隙。即,在x方向上,在侧面18b与半导体芯片120h之间有间隙。同样,在x方向上,在接头部20与半导体芯片120l之间有规定的间隙。即,在x方向上,在侧面14b与半导体芯片120l之间有间隙。因而,在本实施方式中,由接头部20、热沉18h的从侧面18b到半导体芯片120h之间的部分、以及热沉14l的从侧面14b到半导体芯片120l的部分,形成将上臂10h与下臂10l串联连接的串联连接部26。
并联连接部140h、140l的电流流动的方向即x方向的长度(路径长)彼此大致相等。并联连接部180h、180l的电流流动的方向即x方向的长度彼此大致相等。在并联连接部140h、140l和并联连接部180h、180l中,x方向的长度稍稍不同,但为了方便,将全部的并联连接部140h、140l、180h、180l的x方向的长度表示为a1。此外,热沉14h、14l、18h、18l的沿着y方向的长度即宽度彼此大致相等,沿着z方向的长度即厚度彼此大致相等。因而,全部的并联连接部140h、140l、180h、180l的宽度为彼此大致相等的值b1。此外,并联连接部140h、140l、180h、180l的厚度为彼此大致相等的值c1。
因而,上臂10h、下臂10l及串联连接部26的等价电路能够如图5那样表示。如上述那样,在上臂10h和下臂10l中,虽然长度a1稍稍不同,但宽度b1、厚度c1相等,所以在图5中为了方便而将各并联连接部140h、140l、180h、180l的电感设为l1。此外,将串联连接部26的电感设为l2。上臂10h经由主端子21连接到高电位电源线5。下臂10l经由主端子23连接到低电位电源线6。
如图4所示,长度a1比在串联连接部26中电流流动的方向的长度(路径长)a2短。严格地讲,长度更长的发射极电极13b侧的并联连接部180h、180l的长度a1即长度a1的最大值比长度a2短。另外,在图4中,将长度a2用双头箭头表示。
此外,如图3所示,宽度b1比主要构成串联连接部26的接头部20的宽度b2宽。如图4所示,厚度c1比构成接头部20的第1接头部200及第2接头部201的至少一方的厚度厚。在本实施方式中,厚度c1比第2接头部201的厚度c2厚。此外,厚度c1比第1接头部200的厚度厚。通过以上,并联连接部140h、140l、180h、180l的电感l1变得比串联连接部26的电感l2小。
接着,对上述半导体装置10的效果进行说明。
在本实施方式中,并联连接的半导体芯片120h、121h的焊盘13c在y方向上相对于作为主电极的发射极电极13b形成在相同侧。并且,与半导体芯片120h、121h分别对应的信号端子24h在y方向的相同侧延伸设置。同样,并联连接的半导体芯片120l、121l的焊盘13c在y方向上相对于作为主电极的发射极电极13b形成在相同侧。并且,与半导体芯片120l、121l分别对应的信号端子24l在y方向的相同侧延伸设置。这样,在同一个臂中,信号端子24的延伸设置方向为相同的方向,所以能够使信号端子24与外部(设备)的连接构造简化。
此外,在本实施方式中,并联连接部140h、140l、180h、180l各自的电感l1比包括接头部20的串联连接部26的电感l2小。例如如果设串联连接部26的电感l2为规定值,则与使电感l1为电感l2以上的结构相比,能够减小电感l1。由此,能够在采用上述焊盘13c的配置的同时抑制电流偏差。主电路布线的电阻成分的影响由于发射极侧比集电极侧大,所以特别是通过使并联连接部180h、180l各自的电感l1比电感l2小,能够抑制电流偏差。
此外,通过满足l1<l2的关系,能够抑制栅极的异常振荡。由于可以不对栅极串联地插入栅极电阻等,所以能够抑制开关损耗的增大并且抑制栅极的异常振荡。关于这一点,通过基于本发明的结构的实验,实际确认到了效果。
图6表示相对于本实施方式的比较例的信号波形,图7表示本实施方式的半导体装置10的信号波形。都是接通(turnon)时的波形。在图6中,实线表示并联连接的半导体芯片的开尔文发射极间的电压,虚线表示距接头部较近侧的半导体芯片的ice,单点划线表示距接头部较远侧的半导体芯片的ice,双点划线表示vce。在图7中,实线表示开尔文发射极间的电压,虚线表示vge,单点划线表示在并联连接的半导体芯片中流过的电流ice之和,双点划线表示vce。将电感l2固定为3nh,在比较例中将电感l1设为20nh,在本实施方式的例子中将电感l1设为1nh。在比较例中,在与本实施方式基本相同的结构下,使得满足l1>l2。
如图6及图7所示,在设为l1>l2的比较例中,发生栅极的异常振荡,相对于此,在设为l1<l2的本实施方式的例子中,明确可知能够抑制栅极的异常振荡。另外,开尔文发射极间的电压的振幅在比较例中是36.8v,在本实施方式的例子中是4.4v。另外,虽然对接通时进行了例示,但可以想到对于关断(turnoff)时也能得到同样的结果。
通过以上,根据本实施方式的半导体装置10,能够使信号端子24与外部的连接构造简化、并且抑制电流偏差及栅极的异常振荡。特别是,由于可以不对栅极串联地插入栅极电阻等,所以能够实现开关速度的高频化(高速开关)。因而,能够抑制开关损耗的增大并且抑制栅极的异常振荡。
除了上述以外,在本实施方式中,不仅半导体芯片120h、121h、而且半导体芯片120l、121l也在x方向上排列配置,焊盘13c相对于发射极电极13b的配置在上臂10h和下臂10l中相同。并且,全部的信号端子24h、24l在相同的方向上延伸设置。因而,能够使信号端子24与外部(设备)的连接构造更简化。
进而,全部的半导体芯片12沿着x方向以一列配置。因而,能够使信号端子24与外部(设备)的连接构造进一步简化。此外,还能够使半导体装置10的y方向的体积小型化。
此外,长度l、宽度w、厚度t的平板的自感l(μh)能够用周知的下式表示。
(数学式1)
l=0.0002xix[in{2|/(w+t)}+1/2+0.22(w+t)/|]
这样,在电感l与长度l之间,大致比例关系成立。在电感l与1/w之间,大致比例关系成立。在电感l与1/t之间,大致比例关系成立。因而,通过满足上述的长度a1<a2、宽度b1>b2、厚度c1>c2的至少一个关系而使l1<l2的关系成立即可。
在本实施方式中,并联连接部140h、140l、180h、180l的长度a1比串联连接部26的长度a2短。如数学式1所示那样,长度l对电感l的影响最大。因而,通过设为a1<a2,能够满足电感l1<电感l2。特别是,在本实施方式中,长度a1比接头部20的延伸设置长度短。由此,能够更可靠地满足电感l1<电感l2。
此外,在本实施方式中,并联连接部140h、140l、180h、180l的宽度b1比主要构成串联连接部26的接头部20的宽度b2宽。因而,由此也能够满足电感l1<电感l2。
此外,在本实施方式中,并联连接部140h、140l、180h、180l的厚度c1比构成接头部20的第1接头部200及第2接头部201的至少一方的厚度厚。具体而言,厚度c1比第2接头部201的厚度c2厚。此外,厚度c1比第1接头部200的厚度厚。由此也能够满足电感l1<电感l2。另外,如果使开关速度高频化,则通过趋肤效应(skineffect),仅在热沉14h、14l、18h、18l的表层中流过电流。因而,优选的是,与厚度相比使得在宽度方面满足上述关系。
此外,在本实施方式中,主端子21、23的前端部分在从z方向的投影视下重叠。因而,通过磁通抵消效应(magneticfluxcancellationeffect),能够使对于主电路电感贡献度高的主端子21(p端子)的电感lp及主端子23(n端子)的电感ln变小。由此,还能够抑制起因于电感lp、ln而发生的振荡现象。具体而言,在关断时,能够抑制起因于电感lp、ln的尖峰电压经由栅极与集电极之间的寄生电容而与栅极的电感lg形成谐振电路而引起振荡现象的情况。
另外,为了减小电感lp、ln,可以在绝缘爬电距离(insulationcreepagedistance)的容许的范围中,减小在图3中用单点划线表示的交链圈(interlinkedloop)27。交链圈27是在xy平面视下被主端子21、接头部20及主端子23包围的部分。如果减小交链圈27,则能够使主端子21、23的层叠面积变大。因而,能够提高磁通抵消效应、进一步减小电感lp、ln。
(第2实施方式)
本实施方式能够参照之前的实施方式。因此,关于与在之前的实施方式中表示的半导体装置10共通的部分的说明省略。
在本实施方式的半导体装置10中,接头部20的表面为凹凸形状。在图8中表示本实施方式的一例。在图8中,在第1接头部200的焊料连接面的与热沉18h相连的根部附近,形成有凹部203。凹部203形成在第1接头部200中的电流路径上的与焊料202之间的被接触部分。虽然省略了图示,但凹部203在y方向上延伸设置。在y方向上从第1接头部200的一端到另一端而形成凹部203。凹部203例如能够通过压力加工或蚀刻而形成。
这样,如果采用具有凹部203的接头部20,则能够在接头部20中使电流路径变长。由此,能够抑制体积增大并且增大电感l2。通过增大电感l2,容易满足l1<l2的关系。
此外,封固树脂体11进入到凹部203中,产生锚固效应(anchoringeffect)。由此,还能够提高封固树脂体11相对于接头部20的密接性。
另外,也可以代替凹部203而设置凸部。此外,凹凸形状并不限定于第1接头部200。可以设置在第1接头部200及第2接头部201的至少一方。例如,也可以在第2接头部201的与热沉14l相连的根部附近设置凹部203。
(第3实施方式)
本实施方式能够参照之前的实施方式。因此,关于与在之前的实施方式中表示的半导体装置10共通的部分的说明省略。
在本实施方式中,接头部20具有贯通孔。在图9中表示本实施方式的一例。在图9中,在第1接头部200的与热沉18h相连的根部附近形成有贯通孔204。贯通孔204与凹部203同样,形成在第1接头部200中的电流路径上的与焊料202之间的被接触部分。虽然省略了图示,但在第1接头部200形成有多个贯通孔204。多个贯通孔204在y方向上具有规定的间隔而形成。贯通孔204也能够通过例如压力加工或蚀刻而形成。
这样,如果采用具有贯通孔204的接头部20,则在接头部20中能够使电流路径的宽度变窄。由此,能够抑制体积增大并且增大电感l2。通过增大电感l2,容易满足l1<l2的关系。
此外,由于封固树脂体11被填充到贯通孔204内,所以通过锚固效应,还能够提高封固树脂体11相对于接头部20的密接性。
另外,贯通孔204设置在第1接头部200及第2接头部201的至少一方即可。例如,也可以在第2接头部201的与热沉14l相连的根部附近设置贯通孔204。
将本发明依据实施方式进行了记述,但应理解的是本发明并不限定于该实施方式及构造。本发明也包含各种各样的变形例或等价范围内的变形。除此以外,各种各样的组合或形态、进而在它们中仅包含一要素、其以上或其以下的其他的组合或形态也包含在本发明的范畴或思想范围中。
在上述实施方式中,表示了将igbt和fwd形成于同一芯片的例子,但也能够应用于分别形成于不同芯片的结构。
表示了半导体装置10具有端子16的例子,但也可以为不具有端子16的结构。此时,也可以在热沉18设置朝向发射极电极13b突出的凸部。
表示了散热面14a、18a从封固树脂体11露出的例子。但是,也能够应用于散热面14a、18a不从封固树脂体11露出的结构。表示了将封固树脂体11的一面11a、背面11b及散热面14a、18a作为切削面的例子,但并不限定于此。例如也可以使得散热面14a、18a接触于构成型腔的模具的壁面而将封固树脂体11成形。
表示了主端子21、22、23与对应的热沉14、18的散热面14a、18a相连、从封固树脂体11的一面11a或背面11b露出的例子。但是,也能够采用主端子21、22、23不从一面11a及背面11b露出而从封固树脂体11的侧面向外部突出的结构。
表示了2个半导体芯片12在一对散热板之间并联连接的例子,但并不限定于此。也能够应用于为了进一步应对大电流而将3个以上的半导体芯片12在一对散热板之间并联连接的结构。在此情况下,在一对散热板之间并联连接的3个以上的半导体芯片12之中,使得距接头部20最近的半导体芯片12与距接头部20最远的半导体芯片12之间的并联连接部的电感l1小于串联连接部26的电感l2即可。
在从z方向的投影视中,表示了主端子21、23彼此重叠的例子。但是,也能够例如如图10的第1变形例所示那样,采用在从z方向的投影视中主端子21、23彼此不重叠而相互离开地配置的结构。在图10中,在x方向上,在主端子21(p端子)与主端子22(o端子)之间配置有主端子23(n端子)。即,由于在主端子21的旁边配置有主端子23,所以起到显著的磁通抵消的效果。
表示了全部的半导体芯片12在x方向上排列配置、在xy平面视中沿x方向延伸的接头部20连接于热沉14l的作为半导体芯片120l、121l的排列方向的一端的侧面14b和热沉18h的作为半导体芯片120h、121h的排列方向的一端的侧面18b的例子。但是,半导体芯片12的配置及接头部20的延伸设置方向并不限定于上述例子。还能够采用全部的半导体芯片12例如在x方向上排列配置、并且在上臂10h侧和下臂10l侧在y方向上错开的结构、即不是一列的结构。此外,也可以做成例如图11的第2变形例中表示的结构。
在图11中,半导体芯片120h、121h在x方向上排列配置,半导体芯片120l、121l在y方向上排列配置。并且,侧面14b与x方向正交,侧面18b与y方向正交。接头部20以平面l字状弯曲,以与两侧面14b、18b相连。即使做成这样的结构,上臂10h侧的信号端子24h也分别在相同的方向上延伸设置,并且下臂10l侧的信号端子24l也分别在相同的方向上延伸设置。因而,能够使信号端子24与外部的连接构造简化、并且抑制电流偏差及栅极的异常振荡。另外,在图11中,接头部20的路径长比连接部140h、140l、180h、180l的长度a1长。此外,连接部140h、140l、180h、180l的宽度b1比接头部20的宽度b2宽。
表示了以如下方式配置全部的半导体芯片12的例子,即:使得在上臂10h和下臂10l中,半导体芯片12的一面及背面的位置关系、即集电极电极13a与发射极电极13b的位置关系相同。但是,也能够应用于例如如图12的第3变形例所示那样、在上臂10h和下臂10l中半导体芯片12的一面及背面的位置关系为反向的结构。在图12中,半导体芯片120h、121h的集电极电极13a为热沉14h侧,半导体芯片120l、121l的集电极电极13a为热沉18l侧。
在图12中,热沉18h、18l由一片散热板构成。在该散热板中,热沉18h、18l之间的部分为接头部20。串联连接部26仅由接头部20构成。接头部20是散热板中的距接头部20较近的半导体芯片120h、120l之间的部分。因而,通过使接头部20的路径长比并联连接部140h、140l、180h、180l各自的长度a1长,能够使电感l1比电感l2小。
表示了接头部20具有与热沉18h相连的第1接头部200和与热沉14l相连的第2接头部201的例子。但是,只要具有第1接头部200及第2接头部201的至少一方就可以。例如,也能够采用仅具有第1接头部200、将从热沉18h延伸的第1接头部200连接到热沉14l的结构。