用于锂离子电池的热交联型浆料、电极、隔膜、隔膜/电极积层体以及锂离子电池的制作方法

文档序号:15677353发布日期:2018-10-16 20:12阅读:237来源:国知局

本申请涉及热交联型锂离子电池用浆料及其制造方法、锂离子电池用电极、锂离子电池用隔膜、锂离子电池用隔膜/电极积层体以及锂离子电池。



背景技术:

锂离子电池具有小型、轻量、能量密度高、而且可以反复充放电的特性,被用于广泛的用途。因此近年来,以锂离子电池的进一步高性能化为目的,正在研究电极、隔膜等电池部件的改良。

锂离子电池的正极和负极都通过下述方法制造:将电极活性物质和粘合剂树脂在溶剂中分散形成的浆料在集电体(例如金属箔)上进行双面涂布,将溶剂干燥除去形成电极层后,将其使用辊压机等压缩成型。

近年,在锂离子电池用电极中,从提高电池容量的观点来看,作为电极活性物质,提出了各种各样的电极活性物质。然而,由于电极活性物质而不同,伴随充放电容易膨胀和收缩。因此,锂离子电池用电极会发生下述问题:由于反复充放电的初期发生体积变化(回弹性)、使用锂离子电池用电极的锂离子电池的循环特性等电特性容易降低。

于是在本领域中,正在研究试图将上述技术问题通过粘合剂树脂来解决,例如提出了乳液交联体系(专利文献1)和n-羟甲基丙烯酰胺(专利文献2)。

关于锂离子电池的隔膜,近年提出了在聚烯烃微多孔膜的表面上形成含有陶瓷微粒和粘合剂的涂层(耐热层)的耐热性隔膜。众所周知,前述涂层具有即使暴露于高温也可以抑制隔膜的收缩的效果。然而,所得到的耐热性隔膜存在下述技术问题:由于在生产线上运送时和在电池单元内的弯曲等情况下的变形,涂层与聚烯烃微多孔膜的接合不能维持,容易脱落。

于是在本领域中,正在研究试图将上述技术问题通过粘合剂树脂来解决,例如提出了以含有将聚丙烯酸用金属阳离子进行交联的聚丙烯酸盐为特征的隔膜(专利文献3)。还提出了含有具有羧基的水溶性增粘剂、碳化二亚胺化合物交联剂和颗粒状聚合物的锂离子二次电池用多孔膜组合物(专利文献4)。

现有技术文献

专利文献

专利文献1:国际公开第2016/159198号

专利文献2:日本特开2015-185530号公报

专利文献3:日本特开2016-012478号公报

专利文献4:日本特许第6187464号公报



技术实现要素:

发明要解决的技术问题

关于锂离子电池的电极,在专利文献1中提出了乳液的交联体,虽然提高了交联度,但耐回弹性的效果不充分。

对于专利文献2所记载的n-羟甲基丙烯酰胺,存在由于树脂自身具有交联性而发生胶凝的问题。因此,由于不能提高导入量而不能提高交联度,耐回弹性的效果不充分。

关于锂离子电池的隔膜,就专利文献3中记载的将聚丙烯酸用金属阳离子进行交联的聚丙烯酸盐而言,由于交联效果显著低下,存在提高粘着性的效果低下的技术问题。

同时,专利文献4提出了用于隔膜的多孔层,该多孔层使用了在粘合剂中添加含有特定的水溶性增粘剂和碳化二亚胺化合物的组合物,然而,由于前述粘合剂与碳化二亚胺化合物的反应性高,浆料的稳定性差,具有容易胶凝的倾向。因此,微粒发生凝集,随时间推移而沉降,所以发生涂覆时的厚度不均,难以制造均匀的多孔膜。

于是,本发明所要解决的技术问题是提供可以制造电极和隔膜的方法,该电极可以赋予锂离子电池以优异的耐回弹性和电特性,该隔膜可以赋予锂离子电池以优异的耐热收缩性、抗掉粉性、基材粘着性、倍率特性、输出特性。另外,在本申请中,抗掉粉性是指陶瓷微粒互相之间的结合性;基材粘着性是指基材与将本发明所涉及的浆料在基材上涂布、干燥而得到的层(涂层)的接合性。

解决技术问题的技术手段

本发明者为了解决上述技术问题潜心研究的结果发现,通过使用含有用特定的单体制造的聚(甲基)丙烯酰胺、水溶性交联剂以及水的热交联型锂离子电池用浆料,可以解决上述技术问题,从而完成本发明。

通过本申请提供以下项目。

(项目1)

热交联型锂离子电池用浆料,所述热交联型锂离子电池用浆料含有:

水溶性聚(甲基)丙烯酰胺(a),相对于结构单元100摩尔%,所述水溶性聚(甲基)丙烯酰胺(a)含有50摩尔%以上的来自于具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)的结构单元;

水溶性交联剂(a1),所述水溶性交联剂(a1)含有从由甲醛、乙二醛、六亚甲基四胺、尿素甲醛树脂和羟甲基三聚氰胺树脂组成的组中选择的一种以上;

以及水。

(项目2)

如上述项目所述的热交联型锂离子电池用浆料,相对于所述水溶性聚(甲基)丙烯酰胺(a)中的来自于具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)的结构单元100质量%,所述热交联型锂离子电池用浆料含有0.001~3.0质量%的所述水溶性交联剂(a1)。

(项目3)

如上述项目所述的热交联型锂离子电池用浆料,所述热交联型锂离子电池用浆料含有电极活性物质(b)。

(项目4)

如上述项目所述的热交联型锂离子电池用浆料,所述电极活性物质(b)含有10质量%以上的硅或氧化硅。

(项目5)

如上述项目所述的热交联型锂离子电池用浆料,所述热交联型锂离子电池用浆料含有陶瓷微粒(c)。

(项目6)

上述项目中任一项所述的热交联型锂离子电池用浆料的制造方法,所述方法包括以下步骤:向含有所述水溶性聚(甲基)丙烯酰胺(a)的水溶液中加入所述水溶性交联剂(a1)。

(项目7)

通过将上述项目中任一项所述的热交联型锂离子电池用浆料涂布在集电体上,使之进行热交联反应而得到的锂离子电池用电极。

(项目8)

锂离子电池,所述锂离子电池含有上述项目所述的锂离子电池用电极。

(项目9)

通过将上述项目所述的热交联型锂离子电池用浆料涂布在多孔聚烯烃树脂基材或塑料无纺布上,并使之热交联而得到的锂离子电池用隔膜。

(项目10)

通过将上述项目所述的热交联型锂离子电池用浆料涂布在电极材料的活性物质一侧,并使之热交联而得到的锂离子电池用隔膜/电极积层体。

(项目11)

锂离子电池,所述锂离子电池含有上述项目所述的锂离子电池用隔膜和/或上述项目所述的锂离子电池用隔膜/电极积层体。

在本申请中,对于上述的一个或多个特征,除了明示的组合以外,还可以提供进一步的组合。

发明效果

通过使用本发明的锂离子电池用粘合剂水溶液和锂离子电池用浆料,可以提供电池容量的续航和耐回弹性提高的锂离子电池。

通过使用本发明的锂离子电池用粘合剂水溶液和锂离子电池用浆料,可以提供耐热收缩性、抗掉粉性、基材粘着性、倍率特性、输出特性提高的锂离子电池用隔膜。

具体实施方式

在本申请的全文中,各物理特性的值、含量等数值的范围可以适当(例如从下述各项目所记载的上限和下限的值中选择)设定。具体而言,对于数值α,数值α的上限例如是a1、a2、a3等,数值α的下限例如是b1、b2、b3等,在此情况下,数值α的范围例如是a1以下、a2以下、a3以下、b1以上、b2以上、b3以上、a1~b1、a1~b2、a1~b3、a2~b1、a2~b2、a2~b3、a3~b1、a3~b2、a3~b3等。

[1.热交联型锂离子电池用浆料:锂离子电池用浆料,也称浆料]

本申请提供热交联型锂离子电池用浆料,所述热交联型锂离子电池用浆料含有:

水溶性聚(甲基)丙烯酰胺(a),相对于结构单元100摩尔%,所述水溶性聚(甲基)丙烯酰胺(a)含有50摩尔%以上的来自于具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)的结构单元;

水溶性交联剂(a1),所述水溶性交联剂(a1)含有从由甲醛、乙二醛、六亚甲基四胺、尿素甲醛树脂和羟甲基三聚氰胺树脂组成的组中选择的一种以上;

以及水。

在本申请中,“浆料”是指液体和固体颗粒的悬浊液。

在本申请中,“水溶性”是指,在25℃将该化合物0.5g溶解于100g水时,不溶性成分小于0.5质量%(小于2.5mg)。

在本申请中,“(甲基)丙烯酸”是指“从由丙烯酸和甲基丙烯酸组成的组中选择的至少一种”。同样地,“(甲基)丙烯酸酯”是指“从由丙烯酸酯和甲基丙烯酸酯组成的组中选择的至少一种”。同时,“(甲基)丙烯酰基”是指“从由丙烯酰基和甲基丙烯酰基组成的组中选择的至少一种”。

在一个实施方式中,通过使含有具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)的单体组进行聚合而得到水溶性聚(甲基)丙烯酰胺(a)。另外,在本申请中,“聚(甲基)丙烯酰胺”是指,使含有具有(甲基)丙烯酰胺基的化合物的单体组进行聚合而得到的共聚物/聚合物((コ)ポリマー)。

在本申请中,“具有n-无取代(甲基)丙烯酰胺基的化合物”是指,在(甲基)丙烯酰胺基的氮上的2个氢不被氢以外的基团取代的化合物。“具有n-单取代(甲基)丙烯酰胺基的化合物”是指,在(甲基)丙烯酰胺基的氮上的1个氢被氢以外的基团取代的化合物。具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)可以单独使用,也可以将两种以上合并使用。

具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)例如是由下述结构式表示的化合物等:

[化1]

[式中,ra1是氢或甲基;ra2和ra3之中一个是氢,另一个是氢、取代或未取代的烷基、乙酰基或磺酸基;ra4和ra5分别独立,例如是氢原子、取代或未取代的烷基、羧基、羟基、氨基(-nraarab,raa和rab分别独立地为氢或者取代或未取代的烷基)、乙酰基、磺酸基等]

烷基例如是:直链烷基、支链烷基、环烷基等。

直链烷基由通式-cnh2n+1(n是1以上的整数)表示。直链烷基例如是:甲基、乙基、丙基、正丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基等。

支链烷基是直链烷基的至少一个氢被烷基取代的基团。支链烷基例如是:二乙基戊基、三甲基丁基、三甲基戊基、三甲基己基等。

环烷基例如是:单环环烷基、桥环环烷基、稠环环烷基等。

在本申请中,单环是指由碳的共价键形成的、在内部不具有桥接结构的环状结构。同时,稠环是指两个以上的单环共用两个原子(即,各环互相之间仅共用(稠合)一条边)的环状结构。桥环是指两个以上的单环共用3个以上原子的环状结构。

单环环烷基例如是:环戊基、环己基、环庚基、环癸基、3,5,5-三甲基环己基等。

桥环环烷基例如是:三环癸基、金刚烷基、降冰片基等。

稠环环烷基例如是:双环癸基等。

具有n-无取代(甲基)丙烯酰胺基的化合物例如是:(甲基)丙烯酰胺、马来酰胺、以及它们的盐等。

具有n-单取代(甲基)丙烯酰胺基的化合物例如是:n-异丙基(甲基)丙烯酰胺、n-羟甲基(甲基)丙烯酰胺、双丙酮(甲基)丙烯酰胺、(甲基)丙烯酰胺叔丁基磺酸、羟乙基(甲基)丙烯酰胺、n-正丁氧基甲基(甲基)丙烯酰胺、n-异丁氧基甲基(甲基)丙烯酰胺、n-甲氧基甲基(甲基)丙烯酰胺、n-叔丁基(甲基)丙烯酰胺、n,n-亚甲基双(甲基)丙烯酰胺、n-叔丁基(甲基)丙烯酰胺磺酸、以及它们的盐等。

上述盐例如是:二甲基氨基丙基(甲基)丙烯酰胺甲基氯化物季铵盐、二甲基氨基乙基(甲基)丙烯酸酯氯化苄季铵盐、3-((甲基)丙烯酰胺)丙基三甲基氯化铵季铵盐、3-((甲基)丙烯酰胺)丙基三甲基甲基硫酸铵季铵盐等(ジメチルアミノプロピル(メタ)アクリルアミド塩化メチル4級塩、ジメチルアミノエチル(メタ)アクリレートベンジルクロライド4級塩、3-((メタ)アクリルアミド)プロピルトリメチルアンモニウムクロライド4級塩、3-((メタ)アクリルアミド)プロピルトリメチルアンモニウムメチルスルフェート4級塩等)。

在一个实施方式中,在水溶性聚(甲基)丙烯酰胺(a)中所含有的来自于具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)的结构单元其比例的上限例如是99.95摩尔%、99.8摩尔%、99.7摩尔%、99.2摩尔%、95摩尔%、90摩尔%、85摩尔%、80摩尔%、75摩尔%、70摩尔%、65摩尔%等,下限例如是99.8摩尔%、99.7摩尔%、99.2摩尔%、95摩尔%、90摩尔%、85摩尔%、80摩尔%、75摩尔%、70摩尔%、65摩尔%、60摩尔%、55摩尔%、50摩尔%等。在一个实施方式中,上述结构单元的比例优选为50摩尔%以上,较优选为55.0~99.8摩尔%,特别优选为60.0~99.7摩尔%。

在水溶性聚(甲基)丙烯酰胺(a)100质量%中所含有的来自于具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)的结构单元其比例的上限例如是100质量%、90质量%、80质量%、70质量%、60质量%、50质量%、45质量%等,下限例如是90质量%、80质量%、70质量%、60质量%、50质量%、45质量%、40质量%等。在一个实施方式中,上述结构单元的比例优选为40~100质量%,较优选为45~100质量%,特别优选为50~100质量%。

通过在(a)成分中以特定量含有来自于具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a)的结构单元,电极活性物质、填料、陶瓷微粒等的分散性变好,可以制造均匀的层(电极活性物质层和陶瓷微粒层等),因此结构缺陷消失,显示良好的充放电特性。通过在(a)成分中进一步以特定量含有来自于具有(甲基)丙烯酰胺基的化合物的结构单元,聚合物的耐氧化性、耐还原性变好,所以高电压时的劣化受到抑制,显示良好的充放电耐久特性。

(不是(a)成分的单体:也称(b)成分)

在上述单体组中,只要不损失本发明所期望的效果,可以使用不是(a)成分的单体((b)成分)。(b)成分可以单独使用各种公知的成分,也可以将两种以上合并使用。

(b)成分例如是:具有n,n-二取代(甲基)丙烯酰胺基的化合物;具有不饱和羧酸、不饱和磺酸、不饱和磷酸等酸基团的单体;不饱和羧酸酯;α,β-不饱和腈;共轭二烯;芳香族乙烯基化合物等。

上述具有n,n-二取代(甲基)丙烯酰胺基的化合物例如是由下述结构式表示的化合物等:

[化2]

(式中,rb1是氢或甲基;rb2和rb3分别独立地为取代或未取代的烷基、乙酰基或磺酸基,或者rb2和rb3是结合在一起形成环结构的基团;rb4和rb5分别独立地为氢、取代或未取代的烷基、羧基、羟基、氨基(-nrbarbb,rba和rbb分别独立地为氢或者取代或未取代的烷基)、乙酰基、磺酸基;取代烷基的取代基例如是羟基、氨基、乙酰基、磺酸基等;同时,rb2和rb3结合在一起形成环结构的基团例如是吗啉(モルホリル)基等)

上述具有n,n-二取代(甲基)丙烯酰胺基的化合物例如是:n,n-二甲基(甲基)丙烯酰胺、n,n-二乙基(甲基)丙烯酰胺、n,n-二甲基氨基丙基(甲基)丙烯酰胺、(甲基)丙烯酰基吗啉、以及它们的盐等。盐例如是如上所述的盐等。

在结构单元100摩尔%中,具有n,n-二取代(甲基)丙烯酰胺基的化合物的含量不受到特别限定,在一个实施方式中,如果考虑具有n,n-二取代(甲基)丙烯酰胺基的化合物的亲和性,优选在结构单元100摩尔%中小于50摩尔%(例如小于40摩尔%、小于30摩尔%、小于20摩尔%、小于15摩尔%、小于10摩尔%、小于9摩尔%、小于5摩尔%、小于1摩尔%)。

在结构单元100质量%中,具有n,n-二取代(甲基)丙烯酰胺基的化合物的含量的上限例如是49质量%、45质量%、40质量%、35质量%、30质量%、25质量%、20质量%、15质量%、10质量%、5质量%、2质量%等,下限例如是45质量%、40质量%、35质量%、30质量%、25质量%、20质量%、15质量%、10质量%、5质量%、2质量%、1质量%等。在一个实施方式中,在结构单元100质量%中,具有n,n-二取代(甲基)丙烯酰胺基的化合物的含量优选为1~49质量%。

不饱和羧酸例如是:丙烯酸、甲基丙烯酸、巴豆酸、马来酸、富马酸、衣康酸以及它们的盐等。

在结构单元100摩尔%中,不饱和羧酸的含量不受到特别限定,如果考虑不饱和羧酸以外的上述(b)成分与不饱和羧酸的反应,相对于结构单元100摩尔%,优选为小于40摩尔%(例如小于30摩尔%、小于20摩尔%、小于19摩尔%、小于15摩尔%、小于10摩尔%、小于5摩尔%、小于1摩尔%、0摩尔%)。

相对于结构单元100质量%,不饱和羧酸的含量的上限例如是60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%等,下限例如是50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0质量%等。在一个实施方式中,相对于结构单元100质量%,不饱和羧酸的含量优选为0.0~60质量%。

不饱和磺酸例如是:乙烯基磺酸、苯乙烯基磺酸、(甲基)丙烯磺酸等α,β-乙烯属不饱和磺酸;(甲基)丙烯酰胺叔丁基磺酸、2-(甲基)丙烯酰胺-2-甲基丙烷磺酸、2-(甲基)丙烯酰胺-2-羟基丙烷磺酸、3-磺酸基丙基(甲基)丙烯酸酯、双(3-磺酸基丙基)衣康酸酯以及它们的盐等。

在结构单元100摩尔%中,不饱和磺酸的含量不受到特别限定,如果考虑不饱和磺酸以外的上述(b)成分与不饱和磺酸的反应,相对于结构单元100摩尔%,不饱和磺酸的含量的上限例如是40摩尔%、30摩尔%、20摩尔%、19摩尔%、15摩尔%、10摩尔%、5摩尔%、1摩尔%、0.5摩尔%、0.1摩尔%、0.05摩尔%、0.02摩尔%等,下限例如是30摩尔%、20摩尔%、19摩尔%、15摩尔%、10摩尔%、5摩尔%、1摩尔%、0.5摩尔%、0.1摩尔%、0.05摩尔%、0.02摩尔%、0.01摩尔%、0摩尔%等。

相对于结构单元100质量%,不饱和磺酸的含量的上限例如是70质量%、60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0.05质量%、0.02质量%、0.01质量%等,下限例如是60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0.05质量%、0.02质量%、0.01质量%、0质量%等。在一个实施方式中,相对于结构单元100质量%,不饱和磺酸的含量优选为0~70质量%。

不饱和磷酸单体例如是:乙烯基磷酸、乙烯基磷酸酯、双((甲基)丙烯酰氧基乙基)磷酸酯、二苯基-2-(甲基)丙烯酰氧基乙基磷酸酯、二丁基-2-(甲基)丙烯酰氧基乙基磷酸酯、二辛基-2-(甲基)丙烯酰氧基乙基磷酸酯、单甲基-2-(甲基)丙烯酰氧基乙基磷酸酯、3-(甲基)丙烯酰氧基-2-羟基丙烷磷酸以及它们的盐等。

在结构单元100摩尔%中,具有不饱和磷酸等酸基团的单体的含量不受到特别限定,如果考虑不饱和磷酸以外的上述(b)成分与不饱和磷酸的反应,相对于结构单元100摩尔%,优选为小于40摩尔%(例如小于30摩尔%、小于20摩尔%、小于19摩尔%、小于15摩尔%、小于10摩尔%、小于5摩尔%、小于1摩尔%、0摩尔%)。

相对于结构单元100质量%,不饱和磷酸单体的上限例如是60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%等,下限例如是50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0质量%等。在一个实施方式中,相对于结构单元100质量%,不饱和磷酸单体的含量优选为0~60质量%。

在一个实施方式中,在结构单元100摩尔%中,具有不饱和羧酸、不饱和磺酸、不饱和磷酸等酸基团的单体的合计含量相对于结构单元100摩尔%优选为小于40摩尔%(例如小于30摩尔%、小于20摩尔%、小于19摩尔%、小于15摩尔%、小于10摩尔%、小于5摩尔%、小于1摩尔%、0摩尔%)。

相对于结构单元100质量%,具有不饱和羧酸、不饱和磺酸、不饱和磷酸等酸基团的单体的合计含量的上限例如是70质量%、60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%等,下限例如是60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0质量%等。在一个实施方式中,相对于结构单元100质量%,具有不饱和羧酸、不饱和磺酸、不饱和磷酸等酸基团的单体的合计含量优选为0~70质量%。

不饱和羧酸酯优选(甲基)丙烯酸酯。(甲基)丙烯酸酯例如是:直链(甲基)丙烯酸酯、支链(甲基)丙烯酸酯、脂环(甲基)丙烯酸酯、取代(甲基)丙烯酸酯等。

直链(甲基)丙烯酸酯例如是:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸正戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸癸酯等。

支链(甲基)丙烯酸酯例如是:(甲基)丙烯酸异丙酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸异戊酯、(甲基)丙烯酸2-乙基己酯等。

脂环(甲基)丙烯酸酯例如是(甲基)丙烯酸环己酯等。

取代(甲基)丙烯酸酯例如是:(甲基)丙烯酸缩水甘油酯、(甲基)丙烯酸羟甲酯、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸乙二醇酯、二(甲基)丙烯酸乙二醇酯、二(甲基)丙烯酸丙二醇酯、三(甲基)丙烯酸三羟甲基丙酯、四(甲基)丙烯酸季戊四醇酯、六(甲基)丙烯酸二季戊四醇酯、(甲基)丙烯酸烯丙酯、二(甲基)丙烯酸亚乙基酯等。

在结构单元100摩尔%中,不饱和羧酸酯的含量不受到特别限定,通过使用不饱和羧酸酯,可以赋予电极以柔软性,特别是在使用缠绕式、圆筒型电池的情况下是有用的;在制造隔膜时,从(a)成分的玻璃化转变温度降低、从而可以抑制隔膜弯曲的观点来看是有用的。另一方面,如果考虑(a)成分的水溶性,在结构单元100摩尔%中,不饱和羧酸酯的含量相对于结构单元100摩尔%优选为小于40摩尔%(例如小于30摩尔%、小于20摩尔%、小于19摩尔%、小于15摩尔%、小于10摩尔%、小于5摩尔%、小于1摩尔%、0摩尔%)。

同时,相对于结构单元100质量%,不饱和羧酸酯的含量优选为90质量%以下(例如小于80质量%、小于70质量%、小于60质量%、小于50质量%、小于40质量%、小于30质量%、小于20质量%、小于19质量%、小于15质量%、小于10质量%、小于5质量%、小于1质量%、0质量%)。

出于赋予电极和隔膜以柔软性的目的,可以适宜地使用α,β-不饱和腈。α,β-不饱和腈例如是:(甲基)丙烯腈、α-氯(甲基)丙烯腈、α-乙基(甲基)丙烯腈、偏二氰乙烯(シアン化ビニリデン)等。其中,优选(甲基)丙烯腈,特别优选丙烯腈。

在结构单元100摩尔%中,α,β-不饱和腈的含量不受到特别限定,相对于结构单元100摩尔%,优选为小于40摩尔%(例如小于30摩尔%、小于20摩尔%、小于19摩尔%、小于15摩尔%、小于10摩尔%、小于5摩尔%、小于1摩尔%、0摩尔%)。相对于结构单元100摩尔%,α,β-不饱和腈的含量小于40摩尔%,由此在确保(a)成分对水的溶解性的同时,上述浆料的层(涂层)变得均匀,发挥前述柔软性变得容易。

相对于结构单元100质量%,α,β-不饱和腈的含量的上限例如是60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%等,下限例如是50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0质量%等。在一个实施方式中,相对于结构单元100质量%,α,β-不饱和腈的含量优选为0~60质量%。

共轭二烯例如是:1,3-丁二烯、2-甲基-1,3-丁二烯、2,3-二甲基-1,3-丁二烯、2-氯-1,3-丁二烯、取代的直链共轭戊二烯、取代并具有侧链的共轭己二烯等。

在结构单元100摩尔%中,共轭二烯的含量不受到特别限定,从锂离子电池的循环特性的观点来看,在前述结构单元100摩尔%中,优选为小于10摩尔%,较优选为0摩尔%。

相对于结构单元100质量%,共轭二烯的含量的上限例如是30质量%、20质量%、10质量%、5质量%、1质量%等,下限例如是20质量%、10质量%、5质量%、1质量%、0质量%等。在一个实施方式中,相对于结构单元100质量%,共轭二烯的含量优选为0~30质量%。

同时,芳族乙烯基化合物例如是:苯乙烯、α-甲基苯乙烯、对甲基苯乙烯、乙烯基甲苯、氯苯乙烯、二乙烯基苯等。

在结构单元100摩尔%中,芳香族乙烯基化合物的含量不受到特别限定,从锂离子电池的循环特性的观点来看,在前述结构单元100摩尔%中,优选为小于10摩尔%,较优选为0摩尔%。

相对于结构单元100质量%,芳香族乙烯基化合物的含量的上限例如是30质量%、20质量%、10质量%、5质量%、1质量%等,下限例如是20质量%、10质量%、5质量%、1质量%、0质量%等。在一个实施方式中,相对于结构单元100质量%,芳香族乙烯基化合物的含量优选为0~30质量%。

相对于结构单元100摩尔%,除了上述具有不饱和羧酸、不饱和磺酸、不饱和磷酸等酸基团的单体、不饱和羧酸酯、α,β-不饱和腈、共轭二烯、芳香族乙烯基化合物以外的(c)成分在单体组中所占的比例例如是小于10摩尔%、小于5摩尔%、小于2摩尔%、小于1摩尔%、小于0.1摩尔%、小于0.01摩尔%、0摩尔%等;相对于结构单元100质量%,除了上述具有不饱和羧酸、不饱和磺酸、不饱和磷酸等酸基团的单体、不饱和羧酸酯、α,β-不饱和腈、共轭二烯、芳香族乙烯基化合物以外的(c)成分在单体组中所占的比例例如是小于10质量%、小于5质量%、小于1质量%、小于0.5质量%、小于0.1质量%、小于0.01质量%、0质量%等。

相对于浆料100质量%,(a)成分的含量的上限例如是99.9质量%、95质量%、90质量%、80质量%、70质量%、60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0.5质量%、0.2质量%等,下限例如是95质量%、90质量%、80质量%、70质量%、60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0.5质量%、0.2质量%、0.1质量%等。在一个实施方式中,相对于浆料100质量%,含有0.1~99.9质量%的(a)成分。

〈(a)成分的制造方法〉

(a)成分可以使用各种公知的聚合方法进行合成,优选使用自由基聚合法进行合成。具体而言,优选向含有前述成分的单体混合液中加入自由基聚合引发剂和根据需要的链转移剂,边搅拌边在反应温度50~100℃下进行聚合反应。反应时间不受到特别限定,优选为1~10小时。

自由基聚合引发剂不受到特别限制,可以使用各种公知的自由基聚合引发剂。自由基聚合引发剂例如是:过硫酸钾和过硫酸铵等过硫酸盐;上述过硫酸盐和亚硫酸氢钠等还原剂进行组合的氧化还原系聚合引发剂;2,2′-偶氮二(2-脒基丙烷)二盐酸盐等偶氮系引发剂等。自由基聚合引发剂的使用量不受到特别限制,相对于提供给(a)成分的单体组100质量%,优选为0.05~5.00质量%,较优选为0.1~3.0质量%。

在自由基聚合反应前和/或在将所得到的(a)成分进行水溶化时,出于提高制造稳定性的目的,也可以使用氨和有机胺、氢氧化钾、氢氧化钠、氢氧化锂等普通的中和剂进行反应溶液的ph调节。在此情况下,ph优选为2~11。同时,出于同样的目的,也可以使用作为金属离子密封剂的edta或其盐等。

在(a)成分具有酸基团的情况下,可以根据用途调节为适当的中和比率使用。此处,中和比率100%表示被(a)成分中含有的酸成分相同摩尔数的碱中和。同时,中和比率50%表示被相对于(a)成分中含有的酸成分的一半摩尔数的碱中和。中和比率不受到特别限定,在涂层等形成后,优选中和比率70~120%,较优选中和比率80~120%。通过使上述涂层制造后的中和度在上述范围内,酸的大部分成为被中和的状态,在电池内与li离子等结合,不会发生容量降低,所以优选。中和盐例如是:li盐、na盐、k盐、铵盐、mg盐、ca盐、zn盐、al盐等。

〈(a)成分的物理特性〉

(a)成分的重均分子量(mw)不受到特别限定,重均分子量(mw)的上限例如是600万、550万、500万、450万、400万、350万、300万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万等,下限例如是550万、500万、450万、400万、350万、300万、290万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、35万、30万等。在一个实施方式中,从锂离子电池用浆料的分散稳定性的观点来看,(a)成分的重均分子量(mw)优选为30万~600万,较优选为35万~600万。

(a)成分的数均分子量(mn)的上限例如是600万、550万、500万、450万、400万、350万、300万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、30万、20万、10万、5万等,下限例如是550万、500万、450万、400万、350万、300万、290万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、35万、30万、20万、10万、5万、1万等。在一个实施方式中,(a)成分的数均分子量(mn)优选为1万以上。

重均分子量和数均分子量例如作为通过凝胶渗透色谱法(gpc)在适当溶剂下测定的聚丙烯酸换算值求出。

(a)成分的b型粘度不受到特别限定,其上限例如是10万mpa·s、9万mpa·s、8万mpa·s、7万mpa·s、6万mpa·s、5万mpa·s、4万mpa·s、3万mpa·s、2万mpa·s、1万mpa·s、9000mpa·s、8000mpa·s、7000mpa·s、6000mpa·s、5000mpa·s、4000mpa·s、3000mpa·s、2000mpa·s等,下限例如是9万mpa·s、8万mpa·s、7万mpa·s、6万mpa·s、5万mpa·s、4万mpa·s、3万mpa·s、2万mpa·s、1万mpa·s、9000mpa·s、8000mpa·s、7000mpa·s、6000mpa·s、5000mpa·s、4000mpa·s、3000mpa·s、2000mpa·s、1000mpa·s等。在一个实施方式中,(a)成分的b型粘度的范围优选为1000~10万mpa·s。另外,b型粘度使用东机产业株式会社制造、商品名“b型粘度计bm型”等b型粘度计进行测定。

(a)成分的胶凝分率不受到特别限定,(a)成分的胶凝分率的上限例如是99.9%、95%、90%、85%、80%、75%、70%、65%、60%,下限例如是95%、90%、85%、80%、75%、70%、65%、60%、55%、50%等。在一个实施方式中,(a)成分的胶凝分率优选为50%以上,较优选为55%以上。

另外,胶凝分率是指由下式算出的值:

胶凝分率(%)={溶液中的不溶物残渣(g)/溶液中的固体成分的质量(g)}×100

〈水溶性交联剂(a1):也称(a1)成分)〉

本发明的水溶性交联剂(a1)优选满足下述条件的水溶性交联剂:具有在与水溶性聚(甲基)丙烯酰胺(a)中存在的酰胺基(-c(=o)nhr-)进行的热交联反应中表现优异的官能团,该酰胺基、来自于具有n-无取代或单取代(甲基)丙烯酰胺基的化合物(a);具有在室温状态不进行交联且稳定存在的潜力。总之,水溶性交联剂(a1)在浆料的状态下,与水溶性聚(甲基)丙烯酰胺(a)不进行交联且稳定存在,在对浆料涂布后的上述浆料的层(涂层)进行干燥时或在热压制中,起到使水溶性聚(甲基)丙烯酰胺(a)进行热交联的作用。另外,上述仅仅是一种理论,并非意在使本发明受到上述理论约束。

在一个实施方式中,水溶性交联剂(a1)从由甲醛、乙二醛、六亚甲基四胺、尿素甲醛树脂、羟甲基三聚氰胺树脂组成的组中选择至少一种加以使用。

相对于水溶性聚(甲基)丙烯酰胺(a),水溶性交联剂(a1)的含量不受到特别限定。相对于水溶性聚(甲基)丙烯酰胺(a)100质量%,水溶性交联剂(a1)的含量的上限例如是3质量%、2.9质量%、2质量%、1质量%、0.5质量%、0.1质量%、0.01质量%、0.005质量%等,下限例如是2.9质量%、2.5质量%、2质量%、1质量%、0.5质量%、0.1质量%、0.01质量%、0.005质量%、0.001质量%等。在一个实施方式中,从耐回弹性和电极的制造性的观点和/或从陶瓷微粒的基材粘着性和隔膜的制造性的观点来看,水溶性交联剂(a1)的含量优选为0.001~3质量%;从水溶性交联剂(a1)的添加效果以及防止电极活性物质颗粒和/或陶瓷微粒的凝集粒形成等观点来看,水溶性交联剂(a1)的含量较优选0.01~2.9质量%。

水例如是:超纯水、纯水、蒸馏水、离子交换水和水道水等。

〈电极活性物质(b):也称(b)成分〉

在一个实施方式中,上述锂离子电池用浆料含有电极活性物质(b)。电极活性物质例如是负极活性物质、正极活性物质。

只要是可以将锂可逆地吸纳和释放的物质,负极活性物质不受到特别限制,可以从作为目标的锂离子电池的种类中适当选择合适的材料,可以单独使用,也可以将两种以上合并使用。负极活性物质例如是:碳材料及硅材料、含有锂原子的氧化物、铅化合物、锡化合物、砷化合物、锑化合物和铝化合物等与锂进行合金化的材料等。

上述碳材料例如是:作为高度结晶碳的石墨(也称黑铅,例如天然石墨、人造石墨等)、低度结晶碳(软碳、硬碳)、碳黑(科琴黑、乙炔黑、槽黑、灯黑、油炉黑、热炭黑等)、富勒烯、碳纳米管、碳纳米纤维、碳纳米角、碳纤丝、中间相碳微球(mcmb)、沥青系碳纤维等。

上述硅材料除了硅、氧化硅、硅合金以外,例如还有:sic;sioxcy(0<x≤3、0<y≤5);si3n4;si2n2o;以siox(0<x≤2)表示的氧化硅复合物(例如在日本特开2004-185810号公报和日本特开2005-259697号公报中记载的材料等);在日本特开2004-185810号公报中记载的硅材料等。同时,也可以使用在日本特许第5390336号、日本特许第5903761号中记载的硅材料。

上述氧化硅优选以结构式siox(0<x<2、优选为0.1≤x≤1)表示的氧化硅。

上述硅合金优选为硅与至少一种过渡金属的合金,该过渡金属选自于由钛、锆、镍、铜、铁和钼组成的组。这些过渡金属的硅合金具有高电子传导率且具有高强度,所以优选。硅合金较优选为硅-镍合金或硅-钛合金,特别优选为硅-钛合金。相对于上述合金中的金属元素100摩尔%,在硅合金中硅的含有比例优选为10摩尔%以上,较优选为20~70摩尔%。另外,硅材料可以是单晶、多晶和非晶中的任一种。

同时,在作为电极活性物质使用硅材料的情况下,可以合并使用硅材料以外的电极活性物质。这样的电极活性物质例如是:上述碳材料;聚并苯等导电性高分子;axbyoz(a表示碱金属或过渡金属;b表示从由钴、镍、铝、锡、锰等过渡金属选择的至少一种;o表示氧原子;x、y和z分别是0.05<x<1.10、0.85<y<4.00、1.5<z<5.00的范围的数)表示的复合金属氧化物;以及其它金属氧化物等。在使用硅材料作为电极活性物质的情况下,伴随锂的吸纳和释放而发生的体积变化小,所以优选与碳材料合并使用。

上述含有锂原子的氧化物例如是:三元系镍钴锰酸锂、锂-锰复合氧化物(limn2o4等)、锂-镍复合氧化物(linio2等)、锂-钴复合氧化物(licoo2等)、锂-铁复合氧化物(lifeo2等)、锂-镍-锰复合氧化物(lini0.5mn0.5o2等)、锂-镍-钴复合氧化物(lini0.8co0.2o2等)、锂-过渡金属磷酸化合物(lifepo4等)和锂-过渡金属硫酸化合物(lixfe2(so4)3)、锂-钛复合氧化物(钛酸锂:li4ti5o12)等锂-过渡金属复合氧化物及其它的以前公知的电极活性物质等。

从显著发挥本发明的效果的观点来看,与碳材料和/或与锂进行合金化的材料在电极活性物质中优选为含有50质量%以上,较优选为含有80质量%以上,进一步优选为含有90质量%以上,特别优选为含有100质量%。

正极活性物质可总体分为含有无机化合物的活性物质和含有有机化合物的活性物质。在正极活性物质中含有的无机化合物例如是:过渡金属氧化物、锂与过渡金属的复合氧化物、过渡金属硫化物等。上述过渡金属例如是:fe、co、ni、mn、al等。在正极活性物质中使用的无机化合物例如是:licoo2、linio2、limno2、limn2o4、lifepo4、lini1/2mn3/2o4、lico1/3ni1/3mn1/3o2、li[li0.1al0.1mn1.9]o4、lifevo4等含有锂的复合金属氧化物;tis2、tis3、非晶mos2等过渡金属硫化物;cu2v2o3、非晶v2o-p2o5、moo3、v2o5、v6o13等过渡金属氧化物等。这些化合物可以是部分元素取代的化合物。在正极活性物质中含有的有机化合物例如是:聚乙炔、聚对苯等导电性聚合物等。由于导电性差的铁系氧化物在还原烧结时使碳源物质存在,因而也可以作为以碳材料包覆的电极活性物质使用。同时,这些化合物也可以是部分元素取代的化合物。其中,从实用性、电特性、寿命长的方面来看,优选licoo2、linio2、limno2、limn2o4、lifepo4、lini1/2mn3/2o4、lico1/3ni1/3mn1/3o2、li[li0.1al0.1mn1.9]o4。

电极活性物质的形状不受到特别限制,可以是微粒状、薄膜状等任意的形状,优选为微粒状。电极活性物质的平均粒径不受到特别限制,其上限例如是50μm、45μm、40μm、35μm、30μm、25μm、20μm、15μm、10μm、5μm、4μm、3μm、2.9μm、2μm、1μm、0.5μm、0.1μm等,下限例如是45μm、40μm、35μm、30μm、25μm、20μm、15μm、10μm、5μm、4μm、3μm、2.9μm、2μm、1μm、0.5μm、0.1μm等。在一个实施方式中,从均匀地形成薄的涂膜的观点更具体而言,如果平均粒径在0.1μm以上则操作性良好,如果在50μm以下则容易进行电极的涂布,因此,电极活性物质的平均粒径优选为0.1~50μm,较优选为0.1~45μm,进一步优选为1~10μm,特别优选为5μm。

在本申请中,“粒径”是指,颗粒的轮廓线上的任意2点之间的距离中的最大的距离(以下同)。同时在本申请中,如果没有特别指出,“平均粒径”是指,使用扫描电子显微镜(sem)和透射型电子显微镜(tem)等观察手段,采用在数个至数十个视野中观察到的颗粒的粒径平均值所计算出的值(以下同)。

在上述浆料中,相对于电极活性物质(b)100质量%,(a)成分的含量的上限例如是15质量%、14质量%、13质量%、12质量%、11质量%、10质量%、9质量%、8质量%、7质量%、6质量%、5质量%、4质量%、3质量%、2质量%、1.5质量%等,下限例如是14质量%、13质量%、12质量%、11质量%、10质量%、9质量%、8质量%、7质量%、6质量%、5质量%、4质量%、3质量%、2质量%、1.5质量%、1质量%等。在一个实施方式中,相对于电极活性物质(b)100质量%,(a)成分的含量优选为1~15质量%。

在一个实施方式中,从提高锂离子电池的电池容量的观点来看,相对于电极活性物质100质量%,电极活性物质中硅或氧化硅的含量优选为20质量%以上(例如30质量%以上、40质量%以上、50质量%以上、60质量%以上、70质量%以上、80质量%以上、90质量%以上、100质量%)。

在一个实施方式中,在上述浆料中可以含有导电助剂。导电助剂例如是:气相生长碳纤维(vgcf)、碳纳米管(cnt)、碳纳米纤维(cnf)等纤维状碳;黑铅颗粒、乙炔黑、科琴黑、炉黑等碳黑;由平均粒径10μm以下的cu、ni、al、si或它们的合金形成的微粉末等。相对于电极活性物质成分,导电助剂的含量不受到特别限定,优选为0~10质量%,较优选为0.5~6质量%。

〈陶瓷微粒(c):也称为(c)成分〉

在一个实施方式中,上述锂离子电池用浆料含有陶瓷微粒(c)。陶瓷微粒是在多孔聚烯烃树脂基材、塑料无纺布、电极材料的活性物质一侧涂覆的成分,该陶瓷微粒互相之间的间隙可以形成孔。因为陶瓷微粒具有非导电性,所以可以发挥绝缘性,因此,可以防止锂离子电池中的短路。同时,因为陶瓷微粒通常具有高的刚性,所以可以提高锂离子电池用隔膜的机械强度。因此,即使是在多孔聚烯烃树脂基材、塑料无纺布上由热产生收缩应力的情况下,锂离子电池用隔膜可以耐受该应力。其结果是,可以防止由多孔聚烯烃树脂基材、塑料无纺布的收缩导致的短路的发生。

通过使用陶瓷微粒,在水中的分散稳定性优异,在锂离子电池用浆料中沉降困难,可以长时间维持均匀的浆料状态。同时,如果使用陶瓷微粒,可以提高耐热性。另外,陶瓷微粒可以单独使用,也可以将两种以上合并使用。

陶瓷微粒的材料优选为电化学稳定的材料。从这样的观点来看,陶瓷微粒例如是:氧化物颗粒、氮化物颗粒、共价晶体颗粒、难溶性离子晶体颗粒、粘土微粒等。

氧化物颗粒例如是:氧化铝(アルミナ)、氧化铝的水合物(勃姆石(alooh)、三水铝石(al(oh)3)、胶木(ベークライト)、氧化铁、氧化硅、氧化镁(マグネシア)、氢氧化镁、氧化钙、氧化钛(チタニア)、batio3、zro、氧化铝-二氧化硅复合氧化物等。

氮化物颗粒例如是:氮化铝、氮化硅、氮化硼等。

共价晶体颗粒例如是:硅、金刚石等。

难溶性离子晶体颗粒例如是:硫酸钡、氟化钙、氟化钡等。

粘土微粒例如是:二氧化硅、滑石、蒙脱石等粘土微粒等。

其中,从吸水性低、耐热性优异的观点来看,优选勃姆石、氧化铝、氧化镁和硫酸钡,较优选勃姆石。

陶瓷微粒的平均粒径的上限例如是30μm、25μm、20μm、15μm、10μm、5μm、1μm、0.5μm、0.1μm、0.05μm等,下限例如是25μm、20μm、15μm、10μm、5μm、1μm、0.5μm、0.1μm、0.05μm、0.01μm等。在一个实施方式中,陶瓷微粒的平均粒径优选为0.01~30μm。

相对于上述浆料100质量%,陶瓷微粒(c)的含量的上限例如是99.9质量%、95质量%、90质量%、80质量%、70质量%、60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0.5质量%、0.2质量%等,下限例如是95质量%、90质量%、80质量%、70质量%、60质量%、50质量%、40质量%、30质量%、20质量%、10质量%、5质量%、1质量%、0.5质量%、0.2质量%、0.1质量%等。在一个实施方式中,相对于浆料100质量%,含有陶瓷微粒(c)0.1~99.9质量%。

上述浆料中,相对于陶瓷微粒(c)100质量%,(a)成分的含量的上限例如是15质量%、14质量%、13质量%、12质量%、11质量%、10质量%、9质量%、8质量%、7质量%、6质量%、5质量%、4质量%、3质量%、2质量%、1.5质量%等,下限例如是14质量%、13质量%、12质量%、11质量%、10质量%、9质量%、8质量%、7质量%、6质量%、5质量%、4质量%、3质量%、2质量%、1.5质量%、1质量%等。在一个实施方式中,相对于陶瓷微粒(c)100质量%,(a)成分的含量优选为1~15质量%,较优选为1.5~14质量%,进一步优选为2~12质量%。通过具有这样的含量,可以制造粘着性更加优异且电阻小、因而充放电特性更加优异的锂离子电池隔膜。

〈浆料粘度调整溶剂〉

浆料粘度调整溶剂不受到特别限制,只要是包括具有80~350℃的标准沸点的非水系介质即可。浆料粘度调整溶剂可以单独使用,也可以将两种以上合并使用。浆料粘度调整溶剂例如是:n-甲基吡咯烷酮、二甲基甲酰胺、n,n-二甲基乙酰胺等酰胺溶剂;甲苯、二甲苯、正十二烷、四氢萘等烃溶剂;甲醇、乙醇、2-丙醇、异丙醇、2-乙基-1-己醇、1-壬醇、月桂醇等醇溶剂;丙酮、甲乙酮、环己酮、佛尔酮、苯乙酮、异佛尔酮等酮溶剂;二氧杂环己烷、四氢呋喃(thf)等醚溶剂;乙酸苄酯、丁酸异戊酯、乳酸甲酯、乳酸乙酯、乳酸丁酯等酯溶剂;邻甲苯胺、间甲苯胺、对甲苯胺等胺溶剂;γ-丁内酯、δ-丁内酯等内酯;二甲基亚砜、环丁砜等亚砜-砜溶剂;水等。其中,从涂布作业性的方面来看,优选n-甲基吡咯烷酮。上述非水系介质的含量不受到特别限定,相对于上述浆料100质量%,优选为0~10质量%。

〈添加剂〉

上述热交联型锂离子电池用浆料可以含有不属于(a)成分、(a1)成分、(b)成分、(c)成分、水、导电助剂、浆料粘度调整溶剂中任一种的成分作为添加剂。

添加剂例如是:分散剂、流平剂、抗氧化剂、增粘剂、分散体(乳液)、交联剂等。

相对于(a)成分100质量%,添加剂的含量例如是0~5质量%、小于1质量%、小于0.1质量%、小于0.01质量%、0质量%等。

相对于(a1)成分100质量%,添加剂的含量例如是0~5质量%、小于1质量%、小于0.1质量%、小于0.01质量%、0质量%等。

相对于(b)成分或(c)成分100质量%,添加剂的含量例如是0~5质量%、小于1质量%、小于0.1质量%、小于0.01质量%、0质量%等。

相对于上述浆料水溶液100质量%,添加剂的含量例如是0~5质量%、小于1质量%、小于0.1质量%、小于0.01质量%、0质量%等。

分散剂例如是:阴离子性化合物、阳离子性化合物、非离子性化合物、高分子化合物等。

流平剂例如是:烷基系表面活性剂、硅系表面活性剂、氟系表面活性剂、金属系表面活性剂等表面活性剂等。通过使用表面活性剂,防止涂覆时产生的缩孔(はじき),可以提高上述浆料的层(涂层)的平滑性。

抗氧化剂例如是:酚化合物、对苯二酚化合物、有机膦化合物、硫化合物、苯二胺化合物、聚合物型酚化合物等。聚合物型酚化合物是在分子内具有酚结构的聚合物。聚合物型酚化合物的重均分子量优选为200~1000,较优选为600~700。

增粘剂例如是:羧甲基纤维素、甲基纤维素、羟丙基纤维素等纤维素系聚合物以及它们的铵盐和碱金属盐;(改性)聚(甲基)丙烯酸以及它们的铵盐和碱金属盐;(改性)聚乙烯基乙醇、丙烯酸或丙烯酸盐与乙烯基乙醇的共聚物、马来酸酐或马来酸或者富马酸与乙烯基乙醇的共聚物等聚乙烯基乙醇类;聚乙二醇、聚环氧乙烷、聚乙烯基吡咯烷酮、改性聚丙烯酸、氧化淀粉、磷酸淀粉、酪蛋白、各种改性淀粉、丙烯腈-丁二烯共聚物氢化物等。

分散体(乳液)例如是:苯乙烯-丁二烯系共聚物胶乳、聚苯乙烯系聚合物胶乳、聚丁二烯系聚合物胶乳、丙烯腈-丁二烯系共聚物胶乳、聚氨酯系聚合物胶乳、聚甲基丙烯酸甲酯系聚合物胶乳、甲基丙烯酸甲酯-丁二烯系共聚物胶乳、聚丙烯酸酯系聚合物胶乳、氯乙烯系聚合物胶乳、乙酸乙烯酯系聚合物乳液、乙酸乙烯酯-乙烯系共聚物乳液、聚乙烯乳液、羧基改性苯乙烯丁二烯共聚树脂乳液、丙烯酸树脂乳液、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚酰胺(pa)、聚酰亚胺(pi)、聚酰胺酰亚胺(pai)、芳族聚酰胺、海藻酸及其盐、聚偏氟乙烯(pvdf)、聚四氟乙烯(ptfe)、四氟乙烯-六氟丙烯共聚物(fep)、四氟乙烯-全氟烷基乙烯基醚共聚物(pfa)、乙烯-四氟乙烯共聚物(etfe)等。

交联剂例如是:甲醛、乙二醛、六亚甲基四胺、尿素甲醛树脂、羟甲基三聚氰胺树脂、碳化二亚胺化合物、多官能团环氧化合物、噁唑啉化合物、多官能团酰肼化合物、异氰酸酯化合物、三聚氰胺化合物、尿素化合物以及它们的混合物。

上述锂离子电池用浆料也可以含有(a)成分以外的粘合剂,所有粘合剂中的(a)成分的含量优选为90质量%以上(例如91质量%以上、95质量%以上、98质量%以上、99质量%以上、100质量%)。

另外,(a)成分以外的粘合剂可以单独使用,也可以将两种以上合并使用;(a)成分以外的粘合剂例如是:氟系树脂(聚偏氟乙烯、聚四氟乙烯等)、聚烯烃(聚乙烯、聚丙烯等)、具有不饱和键的聚合物(苯乙烯-丁二烯橡胶、异戊二烯橡胶、丁二烯橡胶等)、丙烯酸系聚合物(丙烯酸共聚物、甲基丙烯酸共聚物)、羧甲基纤维素盐、聚乙烯基乙醇共聚物、聚乙烯基吡咯烷酮等。

上述热交联型锂离子电池用浆料可以作为热交联型锂离子电池电极用浆料、热交联型锂离子电池负极用浆料、热交联型锂离子电池正极用浆料、热交联型锂离子电池隔膜用浆料来使用。

[3.锂离子电池用浆料的制造方法]

本申请提供上述锂离子电池用浆料的制造方法,包括在含有水溶性聚(甲基)丙烯酰胺(a)的水溶液中加入前述水溶性交联剂(a1)的步骤。另外,本项目中记载的(a)成分等例如是上述提及的成分等。

在一个实施方式中,得到浆料溶液的工序包括以下步骤:加入水溶性聚(甲基)丙烯酰胺(a)、水溶性交联剂(a1)和水、以及电极活性物质或陶瓷微粒,进行混合。加入上述水溶性交联剂(a1)的方法例如有以下方法:

·在制造水溶性聚(甲基)丙烯酰胺(a)水溶液后进行混合

·在向水溶性聚(甲基)丙烯酰胺(a)水溶液中,将电极活性物质或陶瓷微粒分散后进行混合(也称后添加)

从稳定性的观点来看,优选后添加的方法。

浆料的混合手段例如是:球磨机、砂磨机、颜料分散机、擂溃机、超声波分散机、均质机、行星式搅拌机、霍巴特搅拌机等。

[4.锂离子电池用电极]

本申请提供将上述热交联型锂离子电池用浆料在集电体上涂布并使之进行热交联反应而得到的、在集电体表面具有上述锂离子电池用浆料的干燥物的锂离子电池用电极。

集电体可以不受特别限制地使用各种公知的集电体。集电体的材质不受到特别限定,例如是:铜、铁、铝、镍、不锈钢、镀镍钢等金属材料;以及碳布、碳纸等碳材料。集电体的形态也不受特别限定,在金属材料的情况下,例如是金属箔、金属圆柱、金属线圈、金属板等;在碳材料的情况下,例如是碳板、碳薄膜、碳圆柱等。其中,在将电极活性物质用于负极的情况下,现在工业制品中使用铜箔作为集电体,所以优选。

涂布手段不受到特别限定,例如是:逗号涂布机、凹版涂布机、微型凹版涂布机、模具涂布机、刮棒涂布机等以前公知的涂覆装置。

干燥手段也不受特别限定,温度优选为60~200℃,较优选为100~195℃。气氛为干燥空气或惰性气氛即可。

电极(固化涂膜)的厚度不受到特别限定,优选为5~300μm,较优选为10~250μm。在上述范围内,可以容易得到相对于高密度的电流值而言充分的li吸纳-释放的功能。

上述锂离子电池用电极可以作为锂离子电池用正极、锂离子电池用负极使用。

[5.锂离子电池用隔膜]

本申请提供将上述热交联型锂离子电池用浆料在多孔聚烯烃树脂基材或塑料无纺布上涂布并使之干燥而得到的、在多孔聚烯烃树脂基材或塑料无纺布的表面具有上述热交联型锂离子电池用浆料的干燥物的锂离子电池用隔膜。

上述锂离子电池用浆料既可以仅在基材一侧的面上涂布,也可以在两侧的面上涂布。

(多孔聚烯烃树脂基材)

在一个实施方式中,基材优选为没有电子传导性而具有离子传导性、有机溶剂的耐性高、孔径微细的多孔膜。该多孔膜可以是多孔聚烯烃树脂基材。多孔聚烯烃树脂基材是含有聚烯烃以及它们的混合物或共聚物等树脂作为主成分的微多孔膜。多孔聚烯烃树脂基材在经过涂覆步骤得到聚合物层的情况下,涂覆液的涂覆性优异,隔膜的膜厚更薄,从提高锂离子电池内的活性物质比率、增大单位体积的容量的观点来看为优选。另外,“作为主成分含有”是指,含有大于50质量%,优选为75质量%以上,较优选为85质量%以上,进一步优选为90质量%以上,更进一步优选为95质量%以上,特别优选为98质量%以上,也可以是100质量%。

在一个实施方式中,在多孔聚烯烃树脂基材中聚烯烃树脂的含量不受到特别限定,从在作为锂离子电池用隔膜使用的情况下的断电性能等观点来看,在多孔聚烯烃树脂基材中聚烯烃树脂的含量优选为构成该基材的所有成分的50质量%以上且100质量%以下,较优选为60质量%以上且100质量%以下,进一步优选为70质量%以上且100质量%以下。

聚烯烃树脂不受到特别限定,在挤出、射出、吹胀和吹塑成型等中使用的聚烯烃树脂即可,可以单独使用,也可以将两种以上合并使用。聚烯烃树脂例如是:乙烯、丙烯、1-丁烯、4-甲基-1-戊烯、1-己烯和1-辛烯等的均聚物、共聚物、多段聚合物等。在制造这些聚烯烃树脂时使用的聚合催化剂也没有特别限制,例如是:齐格勒-纳塔系催化剂、菲利普系催化剂和茂金属系催化剂等。

作为多孔聚烯烃树脂基材的材料使用的聚烯烃树脂,由于具有低融点且具有高强度,特别优选以高密度聚乙烯作为主成分的树脂。进一步地,从提高聚烯烃多孔性基材的耐热性的观点来看,较优选将含有聚丙烯和除了聚丙烯以外的聚烯烃树脂的多孔聚烯烃树脂基材合并使用。

此处,聚丙烯的立体结构不受到限定,可以是等规聚丙烯、间规聚丙烯和无规聚丙烯中的任一种。

相对于聚烯烃树脂组合物中所含有的聚烯烃总量,聚丙烯的比例不受到特别限定,从兼顾耐热性和良好的断电功能的观点来看,优选为1~35质量%,较优选为3~20质量%,进一步优选为4~10质量%。

在此情况下,聚丙烯以外的聚烯烃树脂不受到限定,举例来说例如是:乙烯、1-丁烯、4-甲基-1-戊烯、1-己烯、1-辛烯等烯烃的均聚物或共聚物。具体而言,聚丙烯以外的聚烯烃树脂例如是:聚乙烯、聚丁烯、乙烯-丙烯随机共聚物等。

从聚烯烃多孔性基材的孔由热熔融进行闭塞的断电特性的观点来看,作为聚丙烯以外的聚烯烃树脂,优选使用低密度聚乙烯、线型低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯等聚乙烯。其中,从强度的观点来看,较优选根据jisk7112测定的密度在0.93g/cm3以上的聚乙烯。

出于控制强度和硬度、热收缩率的目的,多孔聚烯烃树脂基材还可以含有填料和纤维化合物。同时,出于提高与接合层的粘着性的目的,或者出于降低与电解液的表面张力、提高液体的浸渍性的目的,可以预先使用低分子化合物和高分子化合物对多孔聚烯烃树脂基材的表面进行包覆处理、紫外线等电磁线处理、电晕放电-等离子气等的等离子处理。从电解液的浸渍性高、容易得到与将上述浆料在基材上涂布后干燥而得到的涂层的粘着性方面来看,特别优选由含有羧酸基、羟基和磺酸基等极性基团的高分子化合物进行包覆处理的多孔聚烯烃树脂基材。

多孔聚烯烃树脂基材的厚度不受到特别限定,优选为2μm以上,较优选为5μm以上;优选为100μm以下,较优选为60μm以下,进一步优选为50μm以下。将其厚度调整为2μm以上,从提高机械强度的观点来看是优选的。另一方面,将其厚度调整为100μm以下,因为减少电池中隔膜的占有体积,具有在电池的高容量化方面有利的倾向,所以优选。

(塑料制无纺布)

在一个实施方式中,从与无纺布的粘着性和隔膜厚度的观点来看,在上述锂离子电池用隔膜中使用的塑料制无纺布的平均纤维径优选为1~15μm,较优选为1~10μm。

在一个实施方式中,上述塑料制无纺布的平均孔径优选为1~20μm,较优选为3~20μm,进一步优选为5~20μm。若平均孔径小于1μm,则内部电阻变大,输出特性变差。另一方面,若平均孔径在20μm以上,则锂枝晶生成时有时发生内部短路。

在本申请中,孔径是指在形成塑料制无纺布的合成纤维互相之间的间隙。同时,平均纤维径是指从扫描电子显微镜照片测量纤维的纤维径时,任意地选取的20根纤维的纤维径的平均值。同样地,平均孔径是指从扫描电子显微镜照片测量纤维的孔径时,任意地选取的20根纤维的孔径的平均值。

另外,无纺布优选仅由构成纤维的平均纤维径为1~10μm、平均孔径为1~20μm的合成纤维构成,在隔膜的薄厚化的必要性不太高等情况下,根据需要可以将平均纤维径和孔径与前述不同的合成纤维合并使用。同时,从同样的观点来看,可以将合成纤维以外的纤维适当合并使用。在将这些纤维(平均纤维径和平均孔径在本申请指定的范围外的合成树脂纤维和合成纤维以外的纤维)合并使用的情况下,从确保无纺布的强度等观点来看,其含量优选为30质量%以下,较优选为20质量%以下,进一步优选为10质量%以下。

成为合成树脂纤维材质的合成树脂例如是:聚烯烃(polyolefin)系树脂、聚酯(polyester)系树脂、聚乙酸乙烯酯(polyvinylacetate)系树脂、乙烯-乙酸乙烯酯共聚物(ethylene-vinylacetatecopolymer)树脂、聚酰胺(polyamide)系树脂、丙烯酸(acrylic)系树脂、聚氯乙烯(polyvinylchloride)系树脂、聚偏氯乙烯(polyvinylidenechloride)系树脂、聚乙烯基醚(polyvinylether)系树脂、聚乙烯基酮(polyvinylketone)系树脂、聚醚系树脂、聚乙烯醇(polyvinylalcohol)系树脂、二烯(diene)系树脂、聚氨酯(polyurethane)系树脂、酚(phenol)系树脂、三聚氰胺(melamine)系树脂、呋喃(furan)系树脂、尿素系树脂、苯胺(aniline)系树脂、不饱和聚酯(unsaturatedpolyester)系树脂、醇酸(alkyd)树脂、氟(碳氟(fluorocarbon))系树脂、硅酮(silicone)系树脂、聚酰胺酰亚胺(polyamideimide)系树脂、聚苯硫醚(polyphenylenesulfide)系树脂、聚酰亚胺(polyimide)系树脂、聚碳酸酯(polycarbonate)系树脂、聚甲亚胺(polyazomethine)系树脂、聚酯酰胺(polyesteramide)树脂、聚醚醚酮(polyetheretherketone)系树脂、聚对苯撑苯并双噁唑(poly-p-phenylenebenzobisoxazole)树脂、聚苯并咪唑(polybenzimidazole)系树脂、乙烯-乙烯醇共聚物(ethylene-vinylalcoholcopolymer)系树脂等。其中,在为了提高与陶瓷微粒的粘着性的情况下,优选聚酯系树脂、丙烯腈系树脂、聚烯烃系树脂。同时,如果使用聚酯系树脂、丙烯酸系树脂、聚酰胺系树脂,则可以提高隔膜的耐热性。

聚酯系树脂例如是:聚对苯二甲酸乙二醇酯(polyethyleneterephthalate、pet)系、聚对苯二甲酸丁二醇酯(polybuthyleneterephthalate、pbt)系、聚对苯二甲酸丙二醇酯(polytrimethyleneterephthalate、ppt)系、聚萘二甲酸乙二醇酯(polyethylenenaphthalate、pen)系、聚萘二甲酸丁二醇酯(polybuthylenenaphthalate)、聚间萘二甲酸乙二醇酯(polyethyleneisonaphthalate)系、全芳族聚酯(fullyaromaticpolyester)系等树脂。同时,也可以使用这些树脂的衍生物。在这些树脂中,在为了提高耐热性、电解液耐性、与陶瓷微粒的接合性的情况下,优选聚对苯二甲酸乙二醇酯系树脂。

丙烯腈系树脂例如是:由丙烯腈100%的聚合物形成的树脂、对于丙烯腈的丙烯酸、甲基丙烯酸、丙烯酸酯、甲基丙烯酸酯等(甲基)丙烯酸衍生物、乙酸乙烯酯等的共聚物等。

聚烯烃系树脂例如是:聚丙烯、聚乙烯、聚甲基戊烯、乙烯-乙烯醇共聚物、烯烃系共聚物等。从耐热性的观点来看,聚烯烃系树脂优选聚丙烯、聚甲基戊烯、乙烯-乙烯醇共聚物、烯烃系共聚物等。

聚酰胺系树脂例如是:尼龙等脂肪族聚酰胺、聚对苯二甲酰对苯二胺、聚对苯二甲酰对苯二胺-3,4-二苯醚对苯二甲酰胺(ポリ-p-フェニレンテレフタルアミド-3,4-ジフェニルエーテルテレフタルアミド)、聚间苯二甲酰间苯二胺等全芳族聚酰胺、芳族聚酰胺中的在主链的一部分上具有脂肪链的半芳族聚酰胺等。全芳族聚酰胺可以是对位型、间位型中的任一种。

合成树脂纤维可以是由单一树脂形成的纤维(单一纤维),也可以是由2种以上树脂形成的纤维(复合纤维)。复合纤维例如是芯鞘型、偏芯型、并列型、海岛型、桔瓣型、双金属叠层型(多重バイメタル型)。

同时,可以与合成树脂纤维合并使用的合成树脂纤维以外的纤维例如是:溶剂纺丝纤维素和再生纤维素的短纤维和原纤化物、天然纤维素纤维、天然纤维素纤维的浆化物和原纤化物、无机纤维等。

从得到厚度薄、内部电阻小的隔膜的观点来看,塑料制无纺布的厚度优选为5~25μm,较优选为5~15μm。

在基材上将锂离子电池用浆料进行涂覆的方法不受到特别限定,例如是:刮刀、棒、逆转辊、唇(リップ)、模、幕帘、气刀等各种涂覆方式;柔版、丝网、胶版、凹版、喷墨等各种印刷方式;辊转印、膜转印等转印方式;使用浸蘸等向上拉起的方式后,将非涂覆面一侧的涂液剥落的方式等。

在锂离子电池用浆料的层(涂层)内,通过使含有(a)成分和(c)成分的锂离子电池用浆料进行交联反应,可以形成上述锂离子电池用浆料的层。交联反应可以在将锂离子电池用浆料干燥时等进行。具体的干燥方法例如是:通过温风、热风、低湿风等风干燥;真空干燥;通过红外线、远红外线和电子束等照射的干燥法等。

就从多孔膜用组合物中高效除去溶剂和低分子化合物的观点来看,干燥时的温度的下限优选为40℃以上,较优选为45℃以上,特别优选为50℃以上;从抑制基材热变形的观点来看,干燥时的温度的上限优选为90℃以下,较优选为80℃以下。

干燥时间的下限优选为5秒以上,较优选为10秒以上,特别优选为15秒以上;上限优选为3分钟以下,较优选为2分钟以下。通过使干燥时间在前述范围的下限以上,可以从多孔膜用组合物中充分除去溶剂,因此,可以提高电池的输出特性。同时,通过使干燥时间在上限值以下,可以提高制造效率。

上述锂离子电池用隔膜的制造方法可以包括上述以外的任意步骤。上述锂离子电池用隔膜的制造方法可以包括通过模压和辊压等压制作用对锂离子电池用浆料的层(涂层)进行加压处理的步骤。通过实施加压处理,可以提高基材与锂离子电池用浆料的层的结合性。但是,就将锂离子电池用浆料的层的空隙率确保在优选的范围的观点而言,优选适当控制使压力和加压时间不至于过大。同时,为了除去残留水分,上述锂离子电池用隔膜的制造方法可以包括通过真空干燥和在干燥室内等进行干燥的步骤。

[6.锂离子电池用隔膜/电极积层体]

本申请提供将上述热交联型锂离子电池用浆料在电极上涂布并使之干燥而得到的、作为上述热交联型锂离子电池用浆料的干燥物的锂离子电池用隔膜/电极积层体。

制造锂离子电池用隔膜/电极积层体时使用的电极可以使用各种公知的电极,既可以是本申请提供的电极,也可以不是本申请提供的电极。

锂离子电池用隔膜/电极积层体的制造方法例如是包括下述步骤的方法等:

在集电体上将上述锂离子电池用浆料等含有电极材料的浆料进行涂布、干燥、压制的步骤;

在含有上述电极材料的浆料的干燥物上(即,不是集电体一侧而是电极活性物质一侧),将上述锂离子电池用浆料进行涂布并使之干燥的步骤。

另外,涂布方法、干燥方法、条件等例如是上述的涂布方法、干燥方法、条件等。

[7.锂离子电池]

本申请提供含有上述锂离子电池用电极的锂离子电池。同时,本申请提供含有上述锂离子电池用隔膜和/或上述锂离子电池用隔膜/电极积层体的锂离子电池。在上述电池中也包含电解液和包装材料,电解液和包装材料不受到特别限定。

(电解液)

电解液例如是在非水系溶剂中溶解有支持电解质的非水系电解液等。同时,在上述非水系电解液中也可以含有覆膜形成剂。

非水系溶剂可以不受限制地使用各种公知的非水系溶剂,可以单独使用,也可以将两种以上合并使用。非水系溶剂例如是:碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯等链状碳酸酯溶剂;碳酸乙二醇酯、碳酸丙二醇酯、碳酸丁二醇酯等环状碳酸酯溶剂;1,2-二甲氧基乙烷等链状醚溶剂;四氢呋喃、2-甲基四氢呋喃、环丁砜、1,3-二氧戊环等环状醚溶剂;甲酸甲酯、乙酸甲酯、丙酸甲酯等链状酯溶剂;γ-丁内酯、γ-戊内酯等环状酯溶剂;乙腈等。其中,优选含有环状碳酸酯和链状碳酸酯的混合溶剂的组合。

支持电解质可以使用锂盐。锂盐可以不受限制地使用各种公知的锂盐,可以单独使用,也可以将两种以上合并使用。支持电解质例如是:lipf6、liasf6、libf4、lisbf6、lialcl4、liclo4、cf3so3li、c4f9so3li、cf3cooli、(cf3co)2nli、(cf3so2)2nli、(c2f5so2)nli等。其中,优选在溶剂中容易溶解且显示高解离度的lipf6、liclo4、cf3so3li。使用解离度越高的支持电解质,锂离子传导度越高,因此,可以通过支持电解质的种类调节锂离子传导度。

覆膜形成剂可以不受限制地使用各种公知的覆膜形成剂,可以单独使用,也可以将两种以上合并使用。覆膜形成剂例如是:碳酸亚乙烯基酯、碳酸乙烯基亚乙基酯、碳酸乙烯基乙酯、碳酸甲基苯基酯、碳酸氟代亚乙基酯、碳酸二氟代亚乙基酯等碳酸酯化合物;环硫乙烷、环硫丙烷等环硫烷烃;1,3-丙烷磺内酯、1,4-丁烷磺内酯等磺内酯化合物;马来酸酐、琥珀酸酐等酸酐等。电解质溶液中覆膜形成剂的含量不受到特别限定,按照10质量%以下、8质量%以下、5质量%以下和2质量%以下的顺序优选。通过使含量在10质量%以下,覆膜形成剂的优点在于:可以容易得到初期不可逆容量的抑制、低温特性和倍率特性的提高等。

上述锂离子电池的形态不受特别限制。锂离子电池的形态例如是:使电极片(シート電極)和隔膜成为螺旋状的圆柱形;将板状电极(ペレット電極)和隔膜进行组合的内面向外结构的圆柱形;将板状电极和隔膜进行积层的纽扣式(コインタイプ)等。同时,通过将这些形态的电池收纳在任意外包装盒中,可以做成纽扣型、圆筒型、方型等任意的形状使用。

上述锂离子电池的制造方法不受到特别限制,根据电池的结构采取适当的程序组装即可。锂离子电池的制造方法例如是日本特开2013-089437号公报所记载的方法等。可以在外包装盒上装上负极,在负极上设置电解液和隔膜,再装上正极,使正极与负极相对,由垫片(ガスケット)、封口板进行固定来制造电池。

实施例

以下,列举实施例和比较例对本发明更具体地进行说明。本发明不受到以下实施例限定。另外,在不进行特别说明的情况下,下文中“份”和“%”分别表示质量份和质量%。

1.(a)成分的制造

制造例1

在具备搅拌机、温度计、回流冷凝管、氮气导入管的反应装置中,加入离子交换水1095g、50%丙烯酰胺水溶液400g(2.81mol)、甲代烯丙基磺酸钠(メタリルスルホン酸ナトリウム)0.22g(0.0014mol),通氮气除去反应体系内的氧后,升温至50℃。此处,投入2,2′-偶氮二(2-脒基丙烷)二盐酸盐(日宝化学株式会社制造,商品名“nc-32”)2.0g、离子交换水50g,升温至80℃进行反应3小时,得到含有聚丙烯酰胺的水溶液。

制造例2

在具备搅拌机、温度计、回流冷凝管、氮气导入管的反应装置中,加入离子交换水1428g、50%丙烯酰胺水溶液400g(2.81mol)、80%丙烯酸水溶液63.5g(0.70mol)、甲代烯丙基磺酸钠0.56g(0.0035mol)。通氮气除去反应体系内的氧后,升温至50℃。此处,投入2,2′-偶氮二(2-脒基丙烷)二盐酸盐(日宝化学株式会社制造,商品名“nc-32”)2.5g、离子交换水50g,升温至80℃进行反应3.0小时,得到含有聚丙烯酰胺-丙烯酸共聚物的水溶液。

制造例3~11

除了将上述制造例2中的单体组成和引发剂的量变更为表1所示的单体组成和引发剂的量以外,以与制造例2同样的方式调制含有水溶性聚(甲基)丙烯酰胺的水溶液。

比较制造例1

在具备搅拌机、温度计、回流冷凝管、氮气导入管的反应装置中,加入作为乳化剂的十二烷基苯磺酸钠2.5g、离子交换水944g和作为聚合引发剂的过硫酸钾1.9g,将50%丙烯酰胺水溶液14g、丙烯酰胺叔丁基磺酸21g、丙烯酸丁酯576g、n-羟甲基丙烯酰胺30g在50℃花费1小时滴加而进行聚合。在相同温度下进行聚合2小时后,冷却至25℃,得到颗粒状的含有聚丙烯酰胺-丙烯酸酯的水分散体。

[表1]

·am:丙烯酰胺(三菱ケミカル株式会社制造,“50%丙烯酰胺”)

·atbs:丙烯酰胺叔丁基磺酸(东亚合成株式会社制造,“atbs”)

·nmam:n-羟甲基丙烯酰胺(东京化成工业株式会社制造)

·dmaa:n,n-二甲基丙烯酰胺(东京化成工业株式会社制造)

·aa:丙烯酸(大阪有机化学工业株式会社制造,“80%丙烯酸”)

·an:丙烯腈(三菱ケミカル株式会社制造,“丙烯腈”)

·hema:甲基丙烯酸2-羟乙酯(东京化成工业株式会社制造)

·ba:丙烯酸丁酯(和光纯药工业株式会社制造)

·smas:甲代烯丙基磺酸钠

表中所记载的(a)成分的物理特性如下所述操作进行测定。

b型粘度

各粘合剂水溶液的粘度使用b型粘度计(东机产业株式会社制造,商品名“b型粘度计bm型”)在25℃按照以下条件进行测定。

在粘度100,000~20,000mpa·s的情况下:使用no.4转子,转数6rpm;在粘度小于20,000mpa·s的情况下:使用no.3转子,转数6rpm。

重均分子量

重均分子量通过凝胶渗透色谱法(gpc)作为在0.2m磷酸缓冲液/乙腈溶液(90/10、ph8.0)下测定的聚丙烯酸换算值求出。gpc装置使用hlc-8220(東ソー(株式会社)制造),柱使用sb-806m-hq(shodex制造)。

配制例1

对于由制造例1得到的水溶性聚(甲基)丙烯酰胺(a)100质量份,加入按照固体成分换算为1质量份的37%甲醛水溶液(以下也称福尔马林),在25℃混合0.5小时,得到均匀的水溶性电池用粘合剂。所得到的水溶性电池用粘合剂的胶凝分率按照以下程序进行测定。

<胶凝分率>

将在水溶性聚(甲基)丙烯酰胺(a)中配合了水溶性交联剂(a1)的水溶性电池用粘合剂放入循环风干燥机,在120℃干燥4小时后,得到固体树脂。将该固体树脂的质量正确测定,再以在水中搅拌3小时的条件浸渍后,使用桐山ロート的滤纸(桐山制作所制造,no.50b)进行减压过滤。其后,将滤过物在120℃干燥3小时后,将不溶物残渣的质量正确测定,由下式算出水溶性电池用粘合剂的热交联后的树脂的胶凝分率。

胶凝分率(%)={不溶物残渣(g)/固体树脂的质量(g)}×100

配制例2~12、比较配制例1~3

对于除了将配制例1中水溶性交联剂(a1)的种类和量变更为表2所示的种类和数值以外,以与配制例1同样的方式得到的树脂的胶凝分率进行测定。

[表2]

·福尔马林:37%甲醛水溶液

·乙二醛:40%乙二醛溶液(和光纯药工业株式会社制造)

·六亚甲基四胺(和光纯药工业株式会社制造)

·羟甲基三聚氰胺树脂

·尿素甲醛树脂

实施例1-1:电极的评价

(1)锂离子电池用浆料的制造

使用市售的自转公转搅拌机(商品名“あわとり練太郎”、シンキー(株式会社)制造),在该搅拌机专用的容器中,将以固体成分换算为7质量份的由配制例1所得到的含有聚(甲基)丙烯酰胺(a)和水溶性交联剂(a1)的粘合剂水溶液、50质量份的d50为5μm的硅颗粒和50质量份的天然黑铅(伊藤黑铅工业株式会社制造,商品名“z-5f”)进行混合。此处加入离子交换水,使固体成分浓度成为40%,将该容器置于上述搅拌机中。接着,在2000rpm混炼10分钟后,进行1分钟除泡,得到电极用浆料。

(2)锂离子电池用电极的制造

在由铜箔形成的集电体的表面上,使用刮刀法将上述锂离子电池用浆料均匀涂布,使干燥后的膜厚为25μm;在60℃干燥30分钟后,在150℃/真空下加热处理120分钟得到电极。其后,通过使用辊压机进行压制加工,使膜(电极活性物质层)的密度为1.5g/cm3,得到电极。

(3)锂半电池的制造

在被氩置换的手套箱内,将把上述电极冲裁成型为直径16mm的材料装载于两极式纽扣电池(宝泉株式会社制造,商品名“hsフラットセル”)上。接着,将冲裁成直径24mm的由聚丙烯制多孔膜形成的隔膜(cstechco.,ltd制造,商品名“selionp2010”)进行装载,进一步注入电解液500μl使空气不能进入后,装载把市售的金属锂箔冲裁成型为16mm的材料,使用螺丝将前述两极式纽扣电池的外包装体封闭密封,从而组装成锂半电池。此处使用的电解液是在碳酸乙二醇酯/碳酸甲乙酯=1/1(质量比)的溶剂中,将lipf6以1摩尔/l的浓度溶解的溶液。

实施例1-2~1-12、比较例1-1~1-3

除将组成如下表进行变更以外,以同样的方式得到锂半电池。

[表3]

表中的浆料分散性、回弹率和放电容量维持率通过下述方法测定。

〈浆料分散性评价〉

刚刚调制浆料后的分散性按照以下基准进行目测评价。

◎:整体为均质的膏状,没有液态分离,并且也不能确认凝集物。

○:整体为大致均质的膏状,确认略微液态分离,不能确认凝集物。

△:在容器底部可以确认少量的凝集物和稍多的液态分离。

×:在容器底部可以确认大量粘土状凝集物,也确认显著液态分离。

〈电特性评价:回弹率和放电容量维持率〉

(1)充放电测定

将经上述制造的锂半电池置入25℃的恒温槽,以定电流(0.1c)开始充电,在电压成为0.01v的时间点完成充电(截止)。接着,以定电流(0.1c)开始放电,在电压成为1.0v的时间点完成放电(截止),这样的充放电反复30次。

(2)伴随反复充放电的电极的回弹率

将充放电循环试验在室温(25℃)进行30次循环后,将锂半电池分解,测定电极的厚度。电极的回弹率通过下式求出。

回弹率={(30次循环后的电极厚度-集电体厚度)/(充放电前的电极厚度-集电体厚度)}×100-100(%)

(3)放电容量维持率

放电容量维持率通过下式求出。

放电容量维持率={(第30次循环的放电容量)/(第1次循环的放电容量)}×100(%)

另外,上述测定条件中“1c”是指,将具有一定电容量的电池进行定电流放电1小时后,放电结束的电流值。例如“0.1c”是指花费10小时放电结束的电流值,“10c”是指花费0.1小时放电完成的电流值。

表3表明,在使用实施例1-1~1-12的粘合剂水溶液制作的电极浆料、由该电极浆料制作的锂半电池的评价中,回弹率和放电容量维持率的评价都为良好。

所得到的隔膜的耐热收缩性、抗掉粉性、粘着性、倍率耐性和输出特性通过下述方法测定。

〈耐热收缩性〉

将由实施例和比较例得到的隔膜以及隔膜/电极积层体切成宽12cm×长12cm的正方形,在正方形内部画出边长为10cm的正方形作为试验片。通过将试验片置入150℃的恒温槽放置1小时进行加热处理。加热处理后,测定在内部画出的正方形的面积,将加热处理前后的面积的变化作为作为热收缩率求出,按照下述基准评价耐热性。热收缩率越小表示隔膜的耐热收缩性越好。

○:面积收缩率小于1%

△:面积收缩率在1%以上且小于3%

×:面积收缩率在3%以上

〈抗掉粉性〉

将由实施例和比较例得到的隔膜以及隔膜/电极积层体切成10cm×10cm方形,正确称量质量(x0),将一侧粘贴在厚纸上固定后,在陶瓷层一侧放置使用棉布包覆的直径5cm、900g的砝码,将它们以50rpm的转数相互摩擦10分钟。其后,再度正确测定质量(x1),通过按照下式算出掉粉性(质量%),将隔膜的抗掉粉性按照以下基准进行评价:

掉粉性={(x0-x1)/x0}×100

a:掉粉性小于2质量%

b:掉粉性在2质量%以上且小于5质量%

c:掉粉性在5质量%以上

〈隔膜的粘着性(剥离强度)〉

从由实施例和比较例得到的隔膜以及隔膜/电极积层体切下宽2cm×长10cm的试验片,使涂覆面向上进行固定。接着,在该试验片的陶瓷层表面上,一边按压宽15mm的胶带(“セロテープ(注册商标)”,ニチバン(株式会社)制造))(按照jisz1522规范)一边粘贴后,在25℃条件下使用拉伸试验机((株式会社)エー-アンド-デイ制造的“テンシロンrtm-100”),测定从试验片的一端将该胶带以30mm/分的速度在180°方向上剥离时的应力。测定进行5次,换算为每个宽度15mm的值,将其平均值作为剥离强度算出。剥离强度越大,表示基材与陶瓷层的粘着强度越高或陶瓷层互相之间的粘合性越高,从隔膜基材剥离陶瓷层越难或者陶瓷层互相之间剥离越难。

〈倍率耐性、输出特性〉

(1)叠层型锂离子电池的制造

用于测定倍率耐性、输出特性的叠层型锂离子电池如下操作进行制造。

(1-1)负极的制造

使用市售的自转公转搅拌机(商品名“あわとり練太郎”,シンキー(株式会社)制造),在上述搅拌机专用的容器中,将苯乙烯-丁二烯橡胶(sbr)/羧甲基纤维素(cmc)(质量比1/1)水溶液按照固体成分换算为2份和天然黑铅(伊藤黑铅工业株式会社制造,商品名“z-5f”)98份进行混合。此处,加入离子交换水,使固体成分浓度为40%,将该容器置于前述搅拌机中。接着,在2000rpm混炼10分钟后,进行1分钟除泡,得到锂离子电池用浆料。在由铜箔形成的集电体上装载锂离子电池用浆料,使用刮刀涂布成膜状。将在集电体上涂布锂离子电池用浆料的材料在80℃干燥20分钟使水挥发除去后,使用辊压机进行粘着接合。此时,使电极活性物质层的密度为1.0g/cm3。使用真空干燥机将接合物在120℃加热2小时,裁切为给定的形状(26mm×31mm的矩形),得到电极活性物质层的厚度为15μm的负极。

(1-2)正极的制造

将作为正极活性物质的lini0.5co0.2mn0.3o288质量份与作为导电助剂的乙炔黑6质量份、作为粘合剂的聚偏氟乙烯(pvdf)6质量份进行混合,将该混合物分散于适量的n-甲基-2-吡咯烷酮(nmp)中,制造锂离子电池正极用浆料。接着,制备铝箔作为正极集电体,在铝箔上装载锂离子电池正极用浆料,使用刮刀涂布成为膜状。将涂布锂离子电池正极用浆料后的铝箔在80℃干燥20分钟使nmp挥发除去后,使用辊压机使之粘着接合。此时,使正极活性物质层的密度为3.2g/cm2。使用真空干燥机将接合物在120℃加热6小时,裁切为给定的形状(25mm×30mm的矩形),得到正极活性物质层的厚度为45μm左右的正极。

(1-3)叠层型锂离子电池的制造

使用上述负极和正极或由实施例得到的正极制造叠层型锂离子二次电池。具体而言,在正极和负极之间,将由实施例和比较例得到的隔膜使用矩形片(27×32mm,厚度25μm)进行装夹作为极板组。将该极板组使用两张一组的叠层膜包覆,将三边封闭后,向成为袋状的叠层膜中注入电解液。在碳酸乙二醇酯/碳酸甲乙酯=1/1(质量比)的溶剂中将lipf6以1mol/l的浓度溶解,使用该溶液作为电解液。其后,通过将剩余的一边封闭,使四边被气密地封闭,得到极板组和电解液被密闭的叠层型锂离子二次电池。另外,正极和负极具有可以与外部电连接的极耳,该极耳的一部分向叠层型锂离子二次电池的外侧延伸。将按照以上步骤制造的叠层型锂离子电池通电时,没有产生工作上的问题。

(2)倍率耐性、输出特性的测定

使用上述制造的锂离子二次电池,在25℃以0.1c、2.5~4.2v电压进行充电,在电压成为4.2v的时间点继续以定电压(4.2v)持续充电,在电流值成为0.01c的时间点完成充电(截止)。接着,以0.1c放电至2.5v,充放电反复5次,在第6次循环以后仅将放电变更为1c,进一步进行充放电50次循环。将第6次循环的1c放电容量占第6次循环的充电容量中的比例以百分率算出的值作为初期倍率维持率。该值越大,倍率耐性越好。进一步地,将第50次循环的1c放电容量占第5次循环的1c放电容量中的比例以百分率算出的值作为容量维持率。该值越大,输出特性越好。

实施例2-1

(1)隔膜用浆料的制造

将以固体成分换算为5质量份的由配制例1得到的水溶液和113质量份的水进行搅拌混合,加入100质量份的勃姆石(平均粒径0.8μm),使用均质机(ika株式会社制造,t25digitalultra-turrax)以15000rpm进行分散搅拌60分钟。进一步加入离子交换水调整粘度,制造浆料。

(2)隔膜的制造:隔膜用浆料的层(涂层)的积层

准备宽250mm、长200mm、厚6μm的由湿法制造的单层聚乙烯制隔膜基材(pe基材)。将如上所述得到的浆液使用凹版涂布机涂覆在隔膜的一侧的面上并干燥,使干燥后的厚度为3.0μm,得到锂离子电池用隔膜。

实施例2-2~2-20、比较例2-1~2-4

除了如下表进行变更以外,通过与实施例2-1同样的操作得到锂离子电池用隔膜。

实施例2-21

根据实施例2-5,将浆液涂覆在正极上(而非隔膜上)并干燥,使干燥后的厚度为3.0μm,得到锂离子电池用正极。

实施例2-22

除了将实施例2-5中的浆液涂覆在宽200mm、长200mm、厚9μm、单位重量11g/m2的聚对苯二甲酸乙二醇酯无纺布基材(pet基材)上以外,通过与实施例2-5同样的操作得到锂离子电池用隔膜。

[表4]

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1