本发明主要涉及太阳能电池的叠瓦组件应用领域,特别是涉及一种制备用于perc叠瓦组件的太阳能电池片的方法。本发明还涉及一种制备perc叠瓦组件的方法。此外,本发明涉及一种用于perc叠瓦组件的太阳能电池片和一种perc叠瓦组件。另外,本发明涉及一种制备用于perc叠瓦组件的太阳能电池片的系统。
背景技术:
随着全球煤炭、石油、天然气等常规化石能源的消耗速度加快,生态环境不断恶化,特别是温室气体排放导致日益严峻的全球气候变化,人类社会的可持续发展已经受到严重威胁。世界各国纷纷制定各自的能源发展战略,以应对常规化石能源资源的有限性和开发利用带来的环境问题。太阳能发电凭借其可靠性、安全性、广泛性、长寿性、环保性、资源充足性的特点已成为最重要的可再生能源之一,有望成为未来全球电力供应的主要支柱,其中所使用的太阳能发电装置也被称为光伏发电装置,其通常包括主要由多个太阳能电池片组合而成的太阳能组件或光伏组件,太阳能电池片基于自身半导体光生伏特效应而能够将太阳能转换成电能。
在大力推广和使用太阳能绿色能源的背景下,太阳能电池片能够以叠瓦的方式构成叠瓦组件形式的太阳能电池,其一方面利用小电流低损耗电学原理(光伏组件功率损耗与工作电流的平方成正比例关系)从而使得整个组件的电阻损耗大大降低。另一方面通过充分利用组件中太阳能电池片的间隙区域来进行发电,提高了单位面积的能量密度。另外使用导电胶粘剂替代了常规形式的太阳能电池中应用的光伏焊带,由于光伏焊带在整片电池中表现出较高的电阻而导电胶粘剂形成电路的电阻要远小于使用焊带的方式,使得相较于常规形式的太阳能电池,叠瓦组件形式的太阳能电池的转换效率更高,户外应用可靠性更优异。例如叠瓦组件的小电流及并联电路等特性使得热斑效应对组件的危害得到大大降低。
当前叠瓦组件所使用的太阳能电池片的制造工艺与常规太阳能电池片基本相同,差异在于用于叠瓦组件的太阳能电池片为了适合激光切割和彼此间的互联对电池片正面和背面栅线图形进行了优化设计。根据叠瓦封装工艺要求,叠瓦太阳能电池片保留了正面和背面的主栅线用于辅助导电胶涂覆固化粘接,其中互联工艺由常规光伏焊带通过高温焊接熔融粘接在正面主栅线和背面主栅线上变更为通过导电胶粘剂互联正面主栅线和背面主栅线。即叠瓦组件的电池片与常规太阳能电池片的基本结构相同,而主栅线的位置、图形或形状存在差异。
此外,随着科技的发展,在太阳能电池领域出现了perc电池(passivatedemitterandrearcell,即钝化发射极和背面电池),其核心是在硅片的背光面用三氧化二铝膜覆盖以起到钝化表面的作用(钝化膜),可以有效低降低背表面复合,提高开路电压,增加背表面反射,提高短路电流,从而提升电池的转换效率。在三氧化二铝膜上还可以覆盖氧化硅膜(5~100纳米),随后再在氧化硅膜上可以印刷或沉积少量的导电材料(例如铝背电场),其中在三氧化二铝膜和氮化硅膜中具有开槽,该开槽穿过背面的氮化硅膜和背面氧化铝膜,使得铝背电场能够与硅片形成局部接触。
将perc电池与叠瓦组件的设计组合,所得的perc叠瓦组件的电池片一般在正面具有数根正面主栅线,在背面除了背面主栅线之外还具有涂覆在硅片上的三氧化二铝膜、氮化硅膜和背电场。另一方面,叠瓦组件的电池片的主栅线图形进行变化的主要目的是为了在后续制程中将一整片电池片切割成若干等份的小电池片。每个小电池片正面和背面各保留分别位于切割后小电池片两端边缘位置的一根主栅线,用于叠瓦工艺互联从而保障最大受光面积以及互联粘接强度。
对于正面主栅线和背面主栅线通常采用贵金属浆料、例如金属银浆来实现。在常规组件的封装工艺中以光伏焊带高温焊接的方式实现电池片的互联:由银浆制备的正面主栅线和背面主栅线辅助光伏焊带高温熔融粘接光伏电池,从而完成电连接,其中金属银是实现常规太阳能电池片组件串焊封装必不可少的主要原料。在施加贵金属浆料完成背面主栅线印刷之后,再施加铝浆进行背面铝场印刷,以形成背面铝场。在常规叠瓦组件的制程中对整片的太阳能电池片利用激光来烧蚀切割,其中采用导电胶粘剂涂覆叠片工序将切割后的小电池片的前后正负极互联,一般的连接方式为在小电池片正面的正面主栅线作为负极通过导电胶粘剂与作为正极的在小电池片背面的背面主栅线相联接。然而,这种连接方式中由于背面的主栅线部分铝背场缺失,光生载流子复合率高,加上铝背场与银浆制备的背面主栅线之间的接触电阻,会带来太阳能电池片的效率损失。
上述用于制备电池片正面主栅线和背面主栅线的银浆主要是由金属银的微粒、玻璃粉、有机溶剂所组成的一种混和物的粘稠状的浆料,在制备中,银浆成本占太阳能电池片非硅成本的50%以上。由于光伏产业规模逐年在扩大,每年均以超过30%的速度在增长。其中光伏电池超过数百亿片产出,为此大量消耗贵金属浆料,直接导致生产成本的增加,对于整个产业的度电成本(lcoe)下降不利。同时贵金属银粉需要通过物理和化学的方法进行提炼,生产过程需要消耗大量的能源并对环境产生污染,人员长期接触重金属也不利于身体健康。
因此,迫切需要改进用于perc叠瓦组件太阳能电池片的太阳能电池片的准备方法和用于perc叠瓦组件的太阳能电池片。
技术实现要素:
本发明提出一种制备用于perc叠瓦组件的太阳能电池片的方法、一种制备perc叠瓦组件的方法、一种用于perc叠瓦组件的太阳能电池片和一种perc叠瓦组件、以及一种制备用于perc叠瓦组件电的太阳能电池片的系统,其可以有效提高perc叠瓦组件中太阳能电池片的转换效率并减少制备中贵金属浆料的使用,同时可以满足perc叠瓦组件的正常封装、不影响其制程。另外,根据本发明,可以在降低贵金属浆料的用量的同时提升太阳能电池片组件输出功率,从而最终降低度电成本lcoe并实现光伏平价上网。
本发明的主要构思在于,在太阳能电池片的正面仍保留主栅线,但在制备太阳能电池片的丝网印刷工序中通过优化背场设计直接用铝浆完成太阳能电池片的背面的印刷,制得的太阳能电池片的背面不包括贵金属主栅线、仅具有铝背场。
本发明通过提供独特的制备用于perc叠瓦组件的太阳能电池片的方法,对制备用于perc叠瓦组件的太阳能电池片的传统方法中丝网印刷一道背面主栅线(例如使用金属银浆)并且再印刷一道背面铝场进行优化整合,直接省去了对背面用贵金属浆料进行主栅线的印刷,由此,在使用根据本发明的太阳能电池片制造perc叠瓦组件时,太阳能电池片的正面主栅线直接与背面的铝背场连接,从而通过省去在硅片背面使用贵金属浆料印刷的主栅线减少了可能带来的功率损失,在降低了生产成本的同时增强了太阳能电池片之间的传导效率。
根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法,包括以下步骤:
-提供硅片步骤,提供硅片作为制备太阳能电池片的原料;
-扩散制结步骤,在硅片中形成n型半导体和p型半导体的交界面,即pn结;
-背钝化步骤,通过pecvd或者ald工艺在硅片的背面施加一层背钝化膜;
-镀背面保护膜步骤,通过pecvd方法在背钝化膜上沉积一层保护膜;
-激光刻槽步骤,通过激光烧蚀在背钝化膜和背面保护膜中开槽,露出硅片;
-丝网印刷步骤,其中,使用贵金属浆料对硅片的正面进行丝网印刷,得到主栅线和副栅线;仅使用铝浆对硅片的背面进行丝网印刷,实现太阳能电池片的铝背场覆盖;以及
-快速烧结步骤,形成欧姆接触,能够收集和对外传导光生载流子。
根据本发明的一种优选实施方式,在提供硅片步骤之后执行表面制绒步骤,使用化学试剂在硅片的表面上获得绒面结构。优选地,在表面制绒步骤之后执行清洗步骤,对于制绒步骤中残留的化学试剂进行清洗。
根据本发明的一种优选实施方式,在扩散制结步骤之后执行等离子刻蚀步骤,通过等离子刻蚀将边缘pn结刻蚀去除;和/或在等离子刻蚀步骤之后执行抛光步骤,以将硅片的表面抛光;和/或在扩散制结步骤之后执行去磷硅玻璃步骤,通过化学腐蚀法去除在扩散制结步骤中在硅片的表面形成的磷硅玻璃;和/或在去磷硅玻璃步骤之后执行低温退火步骤,以恢复硅片中由在扩散制结步骤中的高温导致的晶格缺陷;和/或在镀背面保护膜步骤之后执行镀减反射膜步骤,在硅片的正面沉积一层或多层减反射膜。
优选地,在快速烧结步骤之后可以执行光注入或电注入工序,由此来降低叠瓦电池的光衰减。
根据本发明的一种优选实施方式,贵金属浆料是金属银浆料,该金属银浆料是由金属银的微粒、玻璃粉、有机溶剂组成的混和物的粘稠状的浆料。根据本发明的一种优选实施方式,铝浆是由金属铝的微粒、玻璃粉、有机溶剂所组成的混和物的粘稠状的浆料。
根据本发明的一种优选实施方式,在丝网印刷步骤中,在硅片的背面预留一个或多个切割缝。
根据本发明的一种优选实施方式,背钝化膜是三氧化二铝膜,背面保护膜是氮化硅膜。
根据本发明的制备perc叠瓦组件的方法,包括以下步骤,
-根据前述制备用于perc叠瓦组件的太阳能电池片的方法制备太阳能电池片;
-将太阳能电池片切割和分离成多个小电池片;
-各个小电池片相互之间以叠瓦方式排列并以导电胶粘剂实现彼此互联;以及
-封装。
特别地,在perc叠瓦组件的端叠片制备环节中可以采用尾片预留背面主栅线与涂锡铜带通过高温焊接后单独叠片成串汇流引出,或直接采用导电胶粘剂直接将涂锡铜带与铝背场进行有效粘接并叠片成串汇流引出。
根据本发明的一种优选实施方式,对太阳能电池片进行效率分档测试。
根据本发明的太阳能电池片的正面包括多根间隔分布的主栅线和多根间隔分布的副栅线,主栅线和副栅线由贵金属浆料形成,并且太阳能电池片的背面包括背钝化膜、背面保护膜、贯穿所述背钝化膜和所述背面保护膜的开槽、以及由铝浆形成的几乎覆盖整个所述背面的铝背场,其中太阳能电池片的背面不具有由贵金属浆料形成的主栅线。
根据本发明的perc叠瓦组件由如上所述的太阳能电池片构成。
另一方面,提出一种制备用于perc叠瓦组件的太阳能电池片的系统,其包括:
硅片提供装置,提供硅片作为制备太阳能电池片的原料;
扩散制结装置,其在硅片中形成n型半导体和p型半导体的交界面,即pn结;
背钝化装置,其通过pecvd或者ald工艺在硅片的背面沉积一层背钝化膜;
镀背面保护膜装置,其通过pecvd工艺在背钝化膜上沉积一层保护膜;
激光刻槽装置,通过激光烧蚀在背钝化膜和背面保护膜中开槽,露出硅片;
丝网印刷装置,其使用贵金属浆料对硅片的正面进行丝网印刷,得到主栅线和副栅线;仅使用铝浆对硅片的背面进行丝网印刷,实现太阳能电池片的铝背场覆盖;以及
快速烧结装置,其用于形成欧姆接触,能够收集和对外传导光生载流子。
根据本发明的一种优选实施方式,根据本发明的系统还包括表面制绒装置,其使用化学试剂在硅片的表面上获得绒面结构。优选地,根据本发明的系统还包括清洗装置,其对于在表面制绒装置中残留的化学试剂进行清洗。
根据本发明的一种优选实施方式,根据本发明的系统还包括等离子刻蚀装置,其通过等离子刻蚀将边缘pn结刻蚀去除。额外地或代替地,根据本发明的系统还包括去磷硅玻璃装置,其通过化学腐蚀法去除在扩散制结装置中在硅片的表面形成的磷硅玻璃。额外地或代替地,根据本发明的系统还包括抛光装置,其将硅片的表面抛光。额外地或代替地,根据本发明的系统还包括低温退火装置,用于恢复所述硅片中由在所述扩散制结装置中的高温导致的晶格缺陷。额外地或代替地,根据本发明的系统还包括镀减反射膜装置,其在硅片的正面沉积一层或多层减反射膜。
优选地,根据本发明的系统还包括光注入或电注入装置。
附图说明
图1a示出了根据本发明一种实施方式的制备用于perc叠瓦组件的太阳能电池片的方法的示例性流程图,图1b示出了根据本发明的丝网印刷步骤中的具体内容,
图2示出了在用于perc叠瓦组件的太阳能电池片的制备中根据本发明的太阳能电池片的一种实施方式的正面的俯视示意图,
图3示出了在用于perc叠瓦组件的太阳能电池片的侧面剖视图,
图4示出了根据本发明的perc叠瓦组件的局部放大侧面剖视图,
图5示出了根据现有技术的在电池片之间的叠瓦结构,
图6示出了根据本发明一个优选实施方式的电池片之间的叠瓦结构,以及
图7a、图7b和图7c,其分别示出了装配好的根据本发明的perc叠瓦组件的正面、侧面和背面。
具体实施方式
下面,将参照附图详细描述根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法、制备perc叠瓦组件的方法、用于perc叠瓦组件的太阳能电池片、perc叠瓦组件、以及制备用于perc叠瓦组件的太阳能电池片的系统。以下所给出的仅仅是根据本发明的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本发明的其他方式,所述其他方式同样落入本发明的范围内。
参见图1a,其示出了根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法的示例性流程图,这将在以下进行详细说明。
首先,根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法包括提供硅片步骤,以提供硅片。根据一种实施方式,以常规的方式提供硅片作为制备太阳能电池片的原料,硅片可以是单晶硅或多晶硅。例如,可以采用坩锅直拉法制的太阳级单晶硅棒,其原始形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~17cm,厚度约50~350um,电阻率约0.1-10ω.cm的p型。
根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法可以包括可选的表面制绒步骤,其中使用化学试剂(通常用热的碱性溶液,例如氢氧化钠、氢氧化钾、氢氧化锂和乙二胺等),对硅片的表面进行各向异性腐蚀,在硅片的表面上获得绒面结构(例如在每平方厘米硅片表面形成几百万个四面方锥体、即金字塔结构),从而实现增大比表面积并且可以接受更多光子(能量),与此同时减少了入射光的反射。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。
根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法可以包括可选的清洗步骤,其中对于上述制绒步骤中残留的化学试剂进行清洗,例如用酸来中和硅片表面的碱残留和金属杂质,以减少其对电池制结的影响。
根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法包括扩散制结步骤,其中例如提供三氯氧磷(pocl3)作为扩散源,通常在850~900℃高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片的反应,即pocl3与o2反应生成p2o5淀积在硅片表面。p2o5与si反应又生成sio2和磷原子,经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的间隙向硅片内部渗透扩散,在硅片中形成了n型半导体和p型半导体的交界面,也就是pn结。
由于在上述扩散制结步骤中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷,pn结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到pn结的背面,即硅片边缘形成了短路通道。因此,根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法可以包括等离子刻蚀步骤,其中通过等离子刻蚀将边缘pn结刻蚀去除,避免边缘发生短路。通常,等离子刻蚀是在低压状态下,反应气体cf4的母体分子在射频功率的激发下产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团。活性反应基团由于扩散或者在电场作用下到达sio2表面,在那里与被刻蚀材料表面发生化学反应,并形成挥发性的反应生成物脱离被刻蚀物质表面,被真空系统抽出腔体。
在等离子刻蚀步骤之后,可以可选地执行抛光步骤,以将硅片的表面抛光。
另一方面,由于在上述扩散制结步骤中,在硅片表面形成一层含有磷元素的sio2,称之为磷硅玻璃,根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法可以包括去psg(磷硅玻璃)步骤,其中通过化学腐蚀法、例如将硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除在扩散制结中在硅片的表面形成的磷硅玻璃。也可以在辉光放电条件下通过氟和氧交替对硅作用来去除磷硅玻璃。
可选地,由于在上述扩散制结步骤中的高温导致的晶格缺陷,在去psg步骤之后可以对硅片执行低温退火步骤,以恢复硅片中的晶格缺陷。优选地,退火温度例如可以为700-820℃,退火时间例如可以为5~20min。
根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法包括背钝化步骤,用于在硅片的背面施加一层背钝化膜。例如,可以采用pecvd(等离子增强型化学气相沉积)或者ald(原子层气相沉积)工艺在硅片的背面沉积一层背钝化膜、优选三氧化二铝膜。pecvd的技术原理是利用低温等离子体作能量源,将样品置于低气压下辉光放电的阴极上,利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体(例如三甲基铝),气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜、即氮三氧化二铝膜。另一方面,ald技术可以实现优异的三维贴合性和薄膜均匀性,能有效匹配黑硅结构,起到钝化黑硅的作用。生成的三氧化二铝钝化膜的厚度例如为5~50nm。
根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法包括镀背面保护膜步骤,其中通过pecvd工艺在硅片的背面、更确切的说在背钝化膜(例如三氧化二铝膜)上沉积一层保护膜(例如氮化硅膜),从而在保护背钝化膜的同时增加反射光。在此,pecvd的技术与上述在背钝化步骤中所采用的pecvd技术相似,仅使用的反应气体不同(例如sih4和nh3)。所沉积的氧化氮膜的厚度可以根据需要例如为20-200nm。
由于对于硅片表面可以在等离子刻蚀步骤之后进行可选的抛光步骤,而抛光后硅片表面的反射率为35%,为了减少表面反射,提高电池的转换效率,根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法包括正面镀减反射膜步骤,由此在硅片的表面沉积一层或多层减反射膜(例如氮化硅膜),其中pecvd的技术原理是利用低温等离子体作能量源,将样品置于低气压下辉光放电的阴极上,利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体sih4和nh3,气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜即氮化硅薄膜。一般情况下,使用这种等离子增强型化学气相沉积的工艺沉积的薄膜厚度在几十纳米(nm)左右。这样厚度的薄膜具有光学的功能性。利用薄膜干涉原理,可以使光的反射大为减少,电池的短路电流和输出就有很大增加,效率也有相当的提高。
根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法还包括激光刻槽步骤,其中通过激光烧蚀贯穿背钝化膜(三氧化二铝膜)和背面保护膜(氮化硅膜)地开槽,露出硅片,以便于后期施加的背电场与硅片实现良好的欧姆接触。其中可以使用现有技术中常见的激光烧蚀技术。开槽的形状可以根据需要为数个长条或数个点状槽。
在上述扩散制结步骤中已经制成pn结,使得硅片可以在光照下产生电流。为了将产生的电流导出,需要在电池表面上制作正、负两个电极。制造电极的方法很多,而丝网印刷是目前制作太阳电池电极最普遍的一种生产工艺。丝网印刷是采用压印的方式将预定的图形印刷在基板上,其工作原理为:利用丝网图形部分网孔透过浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动,浆料在移动中被刮刀从图形部分的网孔中挤压到基片上。由于浆料的粘性作用使印迹固着在一定范围内,印刷中刮板始终与丝网印版和基片呈线性接触,接触线随刮刀移动而移动,从而完成印刷行程。根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法包括丝网印刷步骤,其中,参见图1b,使用贵金属浆料对硅片的正面进行丝网印刷,得到主栅线和副栅线;仅使用铝浆对硅片的背面进行丝网印刷,实现太阳能电池片的铝背场覆盖。铝浆例如可以是由金属铝的微粒、玻璃粉、有机溶剂所组成的混和物的粘稠状的浆料。在该丝网印刷步骤中,可以根据需要在硅片背面预留若干切割缝。
通过本发明,仅在太阳能电池片的背面施加铝浆,省去了现有技术在硅片的背面使用的贵金属浆料、例如金属银浆,通常每张电池片可直接节省20~50mg银耗量。由于将现有技术中对硅片背面的丝网印刷步骤中的一道(贵金属主栅线)和二道(铝背场)工序简化,仅使用铝浆形成铝背场,减少了生产工艺流程步骤、提高了生产效率,同时降低因印刷背面主栅线带来的良率下降风险。结合在正面例如用银浆印刷的主副栅线完成光生载流子传导载体的建立,同时减少背面主栅线带来的铝背场缺失及银浆制备的背面主栅线与铝背场之间的接触电阻对叠瓦电池转换效率的影响。
经过丝网印刷后的硅片,金属浆料并未完全与硅基形成合金体,不能直接使用。为此,根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法包括快速烧结步骤,利用浆料中玻璃粉的作用使得施加在硅片正面的金属银浆穿过氮化硅蓝膜到达靠近pn结位置从而最终实现与硅基形成良好的欧姆接触,能够收集和对外传导光生载流子。
此外,根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法还可以执行光注入或电注入工序,由此来降低叠瓦电池的光衰减。
以下参照图2、图3对于通过根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法所得到的太阳能电池片的结构进行具体说明。
根据本发明的太阳能电池片的正面栅线结构与常规方法制备的用于perc叠瓦组件的太阳能电池片类似,参见图2,太阳能电池片通常包括多根间隔分布的主栅线和多根间隔分布的副栅线,其均可由贵金属浆料形成,且每根主栅线与多根副栅线均电连接。根据另一种实施方式,每个太阳能电池片的最外侧的两根副栅线的两端均可以设置有倒角,另外,可行的是,副栅线的倒角在副栅线的端部设置斜边。
根据本发明的太阳能电池片的背面并非如常规方法制备的用于perc叠瓦组件的太阳能电池片具有由贵金属浆料形成的主栅线,而是仅具有由铝浆形成的覆盖整个背面的铝背场(参见图3),其中可以根据需要在太阳能电池片的背面预留若干切割缝,以便于在后续工序中对整个硅片、即太阳能电池片进行切割和分离。然而,根据实际需要,太阳能电池片的背面也可以不设置切割缝。
额外地,对所得到的用于perc叠瓦组件的太阳能电池片可以进行效率分档测试,以避免用于perc叠瓦组件的太阳能电池片封装时内部电池电流失配。其中测试可采用专用的金属接触探针排或金属丝网,上探针排或金属丝网与正面主栅正银相接触,电池下面由于是铝背场可直接采用金属底板实现面接触。
通过根据本发明的制备用于perc叠瓦组件的太阳能电池片的方法得到的太阳能电池片,可以进一步例如通过激光烧蚀或者机械切割方式被切割和分离成若干小电池片、例如2-10片,每个小电池片包含在正面的用于传导的银主栅线(宽度例如为0.1-2mm)以及在背面用于传导的铝背场,各个小电池片相互之间以叠瓦方式排列并以导电胶粘剂实现彼此互联,参见图4-图6。例如,在用于perc叠瓦组件的小电池片上涂覆一定量的导电胶粘剂(例如eca)再通过机械搬运将一个小电池片的正面主栅线与下一个小电池片的铝背场位置重合地进行叠片,其中重叠宽度为0.2-5mm,从而实现一定数量的小电池片互联成电池串。一条或多条电池串经过互联和封装后,得到叠瓦组件。
具体地,参见图7a、图7b和图7c,其分别示出了装配好的根据本发明的perc叠瓦组件的正面、侧面和背面。参见图7a,在perc叠瓦组件的正面,由多个小电池片以规则的方式铺设,周围以边框固定。参见图4,其以侧面剖视图示出了根据本发明的叠瓦组件,其在最下方铺设有背板。在该背板上敷设有连接层,其通常为eva,也可以是poe等。以叠瓦的方式在纵向方向上相互连接的小电池片形成电池串并设置在此连接层上。在电池串上设有透光连接层,其透光率至少为93%,通常为eva,也可以是poe等。在最上面设置有透光保护层、例如玻璃等。
由于电池串需要引出串电流,一般电池片的正面主栅线(通常为银栅线)和与常规涂锡铜带可在高温下完成焊接,但是正极铝背场与常规涂锡铜带较难在高温下完成焊接,涂锡铜带与铝背场通过高温焊接不能有效保证粘接强度。为此,对于常规叠瓦叠片工序本发明提出两种方法,第一种方法是在叠片机上料位增加一个有背面有主栅线的叠瓦电池上料位,此片与常规涂锡铜带可实现高温焊接并且能够保证连接强度。待有n片数量的叠瓦小电池片叠成串后,在n+1位将附有汇流引出的电池片与串进行互联,从而实现首尾端均有汇流引出。第二种方法直接采用导电胶粘剂直接连接涂锡铜带和铝背场,从而实现首尾端均有汇流引出。对于电池片之间的叠瓦结构,在现有技术中通常如图5所示,在以叠瓦方式相互连接的电池片之间以导电胶将电池片正面的正面主栅线与电池片背面的背面主栅线连接。根据本发明,如图6所示,电池片之间的叠瓦结构采用导电胶粘剂直接连接电池片正面的正面主栅线和铝背场,从而实现首尾端均有汇流引出。
在上述perc叠瓦组件串制备完毕后,与常规叠瓦封装工艺相同,经过排版层叠敷设、中检、层压、修边、装框、接线盒、固化、清洗测试等工序完成叠瓦组件制备,由此得到叠瓦组件。
为了制备太阳能电池片,根据本发明,提出一种制备用于perc叠瓦组件的太阳能电池片的系统,其包括:
硅片提供装置,提供硅片作为制备太阳能电池片的原料;
扩散制结装置,其在硅片中形成n型半导体和p型半导体的交界面,即pn结;
背钝化装置,其通过pecvd或者ald工艺在硅片的背面沉积一层背钝化膜、优选三氧化二铝膜;
镀背面保护膜装置,其通过pecvd工艺在硅片的背面、更确切的说在三氧化二铝背钝化膜上沉积一层保护膜、例如氮化硅膜;
激光刻槽装置,通过激光烧蚀在背钝化膜(三氧化二铝膜)和背面保护膜(氮化硅膜)中开槽,露出硅片,以便于后期施加的背电场与硅片实现良好的欧姆接触;
丝网印刷装置,其使用贵金属浆料对硅片的正面进行丝网印刷,得到主栅线和副栅线;仅使用铝浆对硅片的背面进行丝网印刷,实现太阳能电池片的铝背场覆盖;以及
快速烧结装置,其用于形成欧姆接触,能够收集和对外传导光生载流子。
此外,根据本发明的系统还可以包括表面制绒装置,其布置在硅片提供装置的下游并且使用化学试剂在硅片的表面上获得绒面结构。优选地,根据本发明的系统还包括清洗装置,其布置在表面制绒装置的下游并且对于在表面制绒装置中残留的化学试剂进行清洗。
另外,根据本发明的系统还可以包括等离子刻蚀装置,其布置在扩散制结装置的下游并且通过等离子刻蚀将边缘pn结刻蚀去除。额外地或代替地,根据本发明的系统还包括抛光装置,其布置在等离子刻蚀装置的下游并且用于对硅片进行抛光。额外地或代替地,根据本发明的系统还包括去磷硅玻璃(去psg)装置,其也布置在扩散制结装置的下游并且通过化学腐蚀法去除在扩散制结装置中在硅片的表面形成的磷硅玻璃。额外地或代替地,根据本发明的系统还包括低温退火装置,其通常布置去磷硅玻璃(去psg)装置下游,通过退火恢复硅片中由于扩散制结装置中的高温导致的晶格缺陷。优选地,根据本发明的系统还包括镀减反射膜装置,其布置在镀背面保护膜装置的下游并且通过pecvd工艺在硅片的正面沉积一层或多层减反射膜、例如氮化硅膜。
优选地,根据本发明的系统还包括光注入或电注入装置,其可以布置在快速烧结装置的下游。
通过以上内容,本领域技术人员容易认识到可将本发明所公开结构的替代结构作为可行的替代实施方式,并且可将本发明所公开的实施方式进行组合以产生新的实施方式,它们同样落入所附权利要求书的范围内。