一种高离子电导率固态电解质及其制备方法及其在全固态锂离子电池中的应用与流程

文档序号:15621801发布日期:2018-10-09 22:13阅读:890来源:国知局

本发明涉及锂离子电池领域,涉及了一种高离子电导率固态电解质,设计一种高离子电导率固态电解质的制备方法,还涉及一种高离子电导率固态电解质在全固态锂离子电池中的应用。



背景技术:

锂离子电池因其具有高的工作电压、高能量密度、对环境无毒无污染等优点而作为一种储能设备在数码领域得到广泛应用。由于纯电动汽车和混合电动汽车的飞速发展,从而对锂离子电池能量密度及安全性等方面有了更高的要求。

目前市场广泛使用的锂离子电池所用的电解质为有机液态电解质,这也带来了一系列问题。目前在液态锂离子电池中所使用的液态电解质的量难以再降低,这对我们提高锂离子电池的质量能量密度和体积能量密度都存在较大困难,其次有机液态电解液易燃易爆,有较大的安全隐患。

与传统的液态锂离子电池相比较,固态电池有很多优势,发展前景值得期待。其中,两个最明显的优势就是能量密度更高,运行更安全。固态电池在大电流下工作不会因出现锂枝晶而刺破隔膜导致短路,不会在高温下发生副反应,不会因产生气体而发生燃烧,因此,安全性被认为是固态电池发展的最根本驱动力之一。然而,固态电池缺点在于固态电解质与正负极片间的界面阻抗较大,导致电池整体内阻大,充电速度慢,从而导致固态电池在市场上没有太大的竞争优势。



技术实现要素:

本发明的目的是:针对上述不足,提供一种高离子电导率固态电解质及其在全固态锂离子电池中的应用。

为达到上述目的,本发明采用的技术方案是:

一种高离子电导率固态电解质,其特征在于:此固态电解质层包括锂盐、陶瓷粉体、胶黏剂以及溶剂,其中,锂盐、陶瓷粉体、胶黏剂以及溶剂的质量比分别为1-20:1-30:1-20:50-90。

所述锂盐为六氟磷酸锂、双三氟甲烷磺酰亚胺锂、高氯酸锂、四氟硼酸锂和二草酸硼酸锂中的一种或多种。

所述陶瓷颗粒包括lilazro、lilatio、lilazrtao中的一种或多种。

所述胶黏剂包括聚丙烯腈、聚环氧丙烷、聚硅氧烷、聚偏氟乙烯、聚甲基丙烯酸甲酯及聚偏氟乙烯-六氟丙烯中的一种或多种复合而成。

所述溶剂为n-甲基吡咯烷酮、二甲基甲酰胺、乙醇、乙酸乙酯中的一种。

一种高离子电导率固态电解质的制备方法,称取胶黏剂加入溶剂中,分散均匀,加入球磨分散均匀的陶瓷颗粒及锂盐,搅拌均匀,即完成电解质浆料的制备。

一种高离子电导率固态电解质层在全固态锂离子电池中的应用,包括涂覆复合负极步骤以及电池的组装步骤,

涂覆复合正负极步骤:在复合正极和复合负极的表面均匀涂覆厚度为15-60μm的电解质浆料,鼓风干燥烘干,烘烤温度为50℃-85℃,继续在60℃-95℃温度下真空烘烤2-10h;

电池的组装步骤:将涂膜后的复合正极和复合负极进行裁剪,将电解质浆料均匀涂覆在复合正极或复合负极上,再将复合正极和复合负极贴合,采用鼓风干燥后真空干燥,烘干,焊极耳,真空封装,冷热压,使电解质层间连接紧密,全固态电池制备完成,其中鼓风干燥的温度为:50℃-85℃,真空干燥的时间为:60℃-95℃,干燥时间为:2-10h,冷压温度为20℃-40℃,压力为0.1mpa-0.3mpa,热压温度为65℃-95℃,压力为0.1mpa-0.3mpa。

与现有技术相比,本发明所达到的技术效果是:通过在复合正负极片表面涂覆高离子电导率固态电解质层,烘干后,切片,再在分切好的复合正极或复合负极表面均匀涂覆电解质层,烘烤前,将正负极组装,鼓风烘干,并组装电池,通过两次涂覆电解质浆料能有效解决全固态电池内部微短路问题及电解质与复合正负极片及电解质层与电解质层之间的界面阻抗较大问题。

附图说明

图1为固态锂离子电池的扣电循环图。

具体实施方式

下面结合附图及实施例对本发明作进一步描述:

实施例一:

一种高离子电导率固态电解质,此固态电解质层包括锂盐、陶瓷粉体、胶黏剂以及溶剂,锂盐、陶瓷粉体、胶黏剂以及溶剂的质量比为10:1:10:79;

所述锂盐为六氟磷酸锂、双三氟甲烷磺酰亚胺锂、高氯酸锂、四氟硼酸锂和二草酸硼酸锂中的一种或多种,优选的为双三氟甲烷磺酰亚胺锂。

所述陶瓷颗粒包括lilazro、lilatio、lilazrtao中的一种或多种,优选的为lilazro。

所述胶黏剂包括聚丙烯腈、聚环氧丙烷、聚硅氧烷、聚偏氟乙烯、聚甲基丙烯酸甲酯及聚偏氟乙烯-六氟丙烯中的一种或多种复合而成,优选的为聚偏氟乙烯和聚偏氟乙烯-六氟丙烯,其中聚偏氟乙烯与聚偏氟乙烯-六氟丙烯的质量比为0.5:9.5。

所述溶剂为n-甲基吡咯烷酮、二甲基甲酰胺、乙醇、乙酸乙酯中的一种,优选的为n-甲基吡咯烷酮。

一种高离子电导率固态电解质的制备方法,称取质量比为0.5:9.5的聚偏氟乙烯与聚偏氟乙烯-六氟丙烯混合物加入n-甲基吡咯烷酮溶剂中,分散均匀,加入球磨分散均匀的lilazro及双三氟甲烷磺酰亚胺锂,搅拌均匀,即完成电解质浆料的制备。

如图1所示:一种高离子电导率固态电解质层在全固态锂离子电池中的应用,包括涂覆复合负极步骤以及电池的组装步骤,

涂覆复合正负极步骤:在复合正极和复合负极的表面均匀涂覆厚度为15μm的电解质浆料,鼓风干燥烘干,烘烤温度为50℃,继续在60℃温度下真空烘烤2h;

电池的组装步骤:将涂膜后的复合正极和复合负极进行裁剪,将电解质浆料均匀涂覆在复合正极或复合负极上,再将复合正极和复合负极贴合,采用鼓风干燥后真空干燥,烘干,焊极耳,真空封装,冷热压,使电解质层间连接紧密,全固态电池制备完成,其中鼓风干燥的温度为:50℃,真空干燥的时间为:60℃干燥时间为:2h,冷压温度为20℃,压力为0.1mpa,热压温度为65℃,压力为0.1mpa。

在上述技术方案中,复合正极由正极浆料涂覆在正极集流体上,经过鼓风干燥烘干而成,其中烘烤温度为95℃,而正极浆料主要由活性材料、导电剂、陶瓷颗粒、锂盐和胶黏剂构成,其中活性材料包括三元正极材料、licoo2、lifepo4、limno2和limn2o4、linio2当中的一种或多种,正极集流体为铝箔,铝箔由压延铝箔或电解铝箔中一种构成,其厚度为14-20um,优选16um压延铝。

复合负极由负极浆料涂覆在负极集流体上,经过鼓风干燥烘干而成,其中烘烤温度为95℃,而负极浆料主要由活性物质、导电剂、陶瓷颗粒、锂盐和胶黏剂(pvdf)构成,活性物质为石墨、中间相碳微球、硅及氧化硅当中的一种或多种,负极集流体为铜箔,铜箔由压延铜箔或电解铜箔中一种构成,其厚度为8-20um,优选12um压延铜。

与现有技术相比,本发明所达到的技术效果是:通过在复合正负极片表面涂覆高离子电导率固态电解质层,烘干后,切片,再在分切好的复合正极或复合负极表面均匀涂覆电解质层,烘烤前,将正负极组装,鼓风烘干,并组装电池,通过两次涂覆电解质浆料能有效解决全固态电池内部微短路问题及电解质与复合正负极片及电解质层与电解质层之间的界面阻抗较大问题。

实施例二:

一种高离子电导率固态电解质,此固态电解质层包括锂盐、陶瓷粉体、胶黏剂以及溶剂,锂盐、陶瓷粉体、胶黏剂以及溶剂的质量比为2:4:2:90;

所述锂盐为六氟磷酸锂、双三氟甲烷磺酰亚胺锂、高氯酸锂、四氟硼酸锂和二草酸硼酸锂中的一种或多种,优选的为六氟磷酸锂。

所述陶瓷颗粒包括lilazro、lilatio、lilazrtao中的一种或多种,优选的为lilatio。

所述胶黏剂包括聚丙烯腈、聚环氧丙烷、聚硅氧烷、聚偏氟乙烯、聚甲基丙烯酸甲酯及聚偏氟乙烯-六氟丙烯中的一种或多种复合而成,优选的为聚甲基丙烯酸甲酯。

所述溶剂为n-甲基吡咯烷酮、二甲基甲酰胺、乙醇、乙酸乙酯中的一种,优选的为二甲基甲酰胺。

一种高离子电导率固态电解质的制备方法,称取质量比为0.5:9.5的聚甲基丙烯酸甲酯加入二甲基甲酰胺溶剂中,分散均匀,加入球磨分散均匀的lilatio及六氟磷酸锂,搅拌均匀,即完成电解质浆料的制备。

如图1所示:一种高离子电导率固态电解质层在全固态锂离子电池中的应用,包括涂覆复合负极步骤以及电池的组装步骤,

涂覆复合正负极步骤:在复合正极和复合负极的表面均匀涂覆厚度为40μm的电解质浆料,鼓风干燥烘干,烘烤温度为70℃,继续在80℃温度下真空烘烤6h;

电池的组装步骤:将涂膜后的复合正极和复合负极进行裁剪,将电解质浆料均匀涂覆在复合正极或复合负极上,再将复合正极和复合负极贴合,采用鼓风干燥后真空干燥,烘干,焊极耳,真空封装,冷热压,使电解质层间连接紧密,全固态电池制备完成,其中鼓风干燥的温度为:70℃,真空干燥的时间为:80℃,干燥时间为:6h,冷压温度为30℃,压力为0.2mpa,热压温度为80℃,压力为0.2mpa。

在上述技术方案中,复合正极由正极浆料涂覆在正极集流体上,经过鼓风干燥烘干而成,其中烘烤温度为110℃,而正极浆料主要由活性材料、导电剂、陶瓷颗粒、锂盐和胶黏剂构成,其中活性材料包括三元正极材料、licoo2、lifepo4、limno2和limn2o4、linio2当中的一种或多种,正极集流体为铝箔,铝箔由压延铝箔或电解铝箔中一种构成,其厚度为14-20um,优选16um压延铝。

复合负极由负极浆料涂覆在负极集流体上,经过鼓风干燥烘干而成,其中烘烤温度为110℃,而负极浆料主要由活性物质、导电剂、陶瓷颗粒、锂盐和胶黏剂(pvdf)构成,活性物质为石墨、中间相碳微球、硅及氧化硅当中的一种或多种,负极集流体为铜箔,铜箔由压延铜箔或电解铜箔中一种构成,其厚度为8-20um,优选12um压延铜。

与现有技术相比,本发明所达到的技术效果是:通过在复合正负极片表面涂覆高离子电导率固态电解质层,烘干后,切片,再在分切好的复合正极或复合负极表面均匀涂覆电解质层,烘烤前,将正负极组装,鼓风烘干,并组装电池,通过两次涂覆电解质浆料能有效解决全固态电池内部微短路问题及电解质与复合正负极片及电解质层与电解质层之间的界面阻抗较大问题。

实施例三:

一种高离子电导率固态电解质,此固态电解质层包括锂盐、陶瓷粉体、胶黏剂以及溶剂,锂盐、陶瓷粉体、胶黏剂以及溶剂的质量比为20:10:20:50;

所述锂盐为六氟磷酸锂、双三氟甲烷磺酰亚胺锂、高氯酸锂、四氟硼酸锂和二草酸硼酸锂中的一种或多种,优选的为四氟硼酸锂。

所述陶瓷颗粒包括lilazro、lilatio、lilazrtao中的一种或多种,优选的为lilazrtao。

所述胶黏剂包括聚丙烯腈、聚环氧丙烷、聚硅氧烷、聚偏氟乙烯、聚甲基丙烯酸甲酯及聚偏氟乙烯-六氟丙烯中的一种或多种复合而成,优选的为聚环氧丙烷。

所述溶剂为n-甲基吡咯烷酮、二甲基甲酰胺、乙醇、乙酸乙酯中的一种,优选的为乙酸乙酯。

一种高离子电导率固态电解质的制备方法,称取聚环氧丙烷加入乙酸乙酯溶剂中,分散均匀,加入球磨分散均匀的lilazrtao及四氟硼酸锂,搅拌均匀,即完成电解质浆料的制备。

一种高离子电导率固态电解质层在全固态锂离子电池中的应用,包括涂覆复合负极步骤以及电池的组装步骤,

涂覆复合正负极步骤:在复合正极和复合负极的表面均匀涂覆厚度为60μm的电解质浆料,鼓风干燥烘干,烘烤温度为85℃,继续在95℃温度下真空烘烤10h;

电池的组装步骤:将涂膜后的复合正极和复合负极进行裁剪,将电解质浆料均匀涂覆在复合正极或复合负极上,再将复合正极和复合负极贴合,采用鼓风干燥后真空干燥,烘干,焊极耳,真空封装,冷热压,使电解质层间连接紧密,全固态电池制备完成,其中鼓风干燥的温度为:85℃,真空干燥的时间为:95℃,干燥时间为:10h,冷压温度为40℃,压力为0.3mpa,热压温度为95℃,压力为0.3mpa。

如图1中所示:从上到下结构分别为:正极集流体1、正极浆料2、高离子电导率固态电解质浆料3、高离子电导率固态电解质浆料4、高离子电导率固态电解质浆料5、负极浆料6以及负极集流体7。

在上述技术方案中,复合正极由正极浆料涂覆在正极集流体上,经过鼓风干燥烘干而成,其中烘烤温度为130℃,而正极浆料主要由活性材料、导电剂、陶瓷颗粒、锂盐和胶黏剂构成,其中活性材料包括三元正极材料、licoo2、lifepo4、limno2和limn2o4、linio2当中的一种或多种,正极集流体为铝箔,铝箔由压延铝箔或电解铝箔中一种构成,其厚度为14-20um,优选16um压延铝。

复合负极由负极浆料涂覆在负极集流体上,经过鼓风干燥烘干而成,其中烘烤温度为130℃,而负极浆料主要由活性物质、导电剂、陶瓷颗粒、锂盐和胶黏剂(pvdf)构成,活性物质为石墨、中间相碳微球、硅及氧化硅当中的一种或多种,负极集流体为铜箔,铜箔由压延铜箔或电解铜箔中一种构成,其厚度为6-20um,优选8um压延铜。

与现有技术相比,本发明所达到的技术效果是:通过在复合正负极片表面涂覆高离子电导率固态电解质层,烘干后,切片,再在分切好的复合正极或复合负极表面均匀涂覆电解质层,烘烤前,将正负极组装,鼓风烘干,并组装电池,通过两次涂覆电解质浆料能有效解决全固态电池内部微短路问题及电解质与复合正负极片及电解质层与电解质层之间的界面阻抗较大问题。

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1