基于聚苯胺和氧化锌光活化层的全无机钙钛矿太阳能电池及其制备方法和应用与流程

文档序号:16093717发布日期:2018-11-27 23:19阅读:450来源:国知局

本发明属于新材料技术以及新能源技术领域,特别涉及一种具有宽光谱响应的基于聚苯胺和氧化锌光活化层的全无机钙钛矿太阳能电池及其制备方法和应用。



背景技术:

钙钛矿太阳能电池是近年来基于固态染料敏化太阳能电池发展而来的一类新型薄膜太阳能电池。虽然有机-无机钙钛矿太阳能电池光电转换效率已经达到商业化的基本要求,但仍然存在着许多问题,如常规空穴材料(Spiro-OMeTAD)价格昂贵、碘离子的迁移导致钙钛矿晶体稳定性差等。这些问题不利于杂化钙钛矿太阳能电池的商业化应用,然而基于CsPbBr3钙钛矿吸光层的全无机钙钛矿太阳能电池在高温和高湿环境均具有很高的长期稳定性,但CsPbBr3具有2.3Ev的带隙,因此只能吸收波长范围为300~550nm的太阳光,这也极大限制了无机钙钛矿太阳能电池性能的进一步提升。为了实现全无机钙钛矿太阳能电池的宽光谱吸收,开发一种制备方法简单、性能稳定、宽光谱响应的光活化层对拓宽全无机钙钛矿太阳能电池的光谱吸收范围和提升光伏性能具有重要的理论意义和实用价值。



技术实现要素:

本发明在于提供了一种基于聚苯胺和氧化锌光活化层的全无机钙钛矿太阳能电池及其制备方法和应用,本发明可以拓宽全无机钙钛矿太阳能电池的光谱吸收范围,极大提升电池器件的性能,促进全无机钙钛矿太阳能电池的实用化进程,具有重要的实用价值和经济价值。

为实现上述发明目的,本发明采用以下技术方案予以实现:

本发明提供了基于聚苯胺和氧化锌光活化层的全无机钙钛矿太阳能电池的制备方法,它包括以下步骤:

(1) 将苯胺单体溶解在HCl水溶液中,配成苯胺盐酸溶液;将过硫酸铵溶解在HCl水溶液中,配成过硫酸铵溶液;取所述过硫酸铵溶液缓慢滴加到所述苯胺盐酸溶液中,在低温环境发生聚合反应制得聚苯胺反应液;将聚苯胺反应液抽滤,清洗,真空干燥制得聚苯胺粉体;

(2) 配制浓度为0.1~0.2mol/L的乙酸锌甲醇溶液和0.3~0.5mol/L的氢氧化钾甲醇溶液;将所述氢氧化钾甲醇溶液逐滴加到所述乙酸锌甲醇溶液中,在60~70℃下剧烈搅拌反应,经离心、干燥后制得氧化锌纳米颗粒;

(3)、将所述聚苯胺粉体和氧化锌纳米颗粒在氯苯中混合,制得聚苯胺/氧化锌前驱体溶液;

(4)、配制浓度为0.5~1mol/L的钛酸异丙酯乙醇溶液,配制溶度为0.1~0.5g/mL的TiO2浆料,配制浓度为0.02~0.06 mol/L的四氯化钛溶液;配制浓度为1~2mol/L溴化铅的DMF溶液和浓度为0.05~0.1mol/L的溴化铯甲醇溶液;

(5)、将所述钛酸异丙酯乙醇溶液旋涂在FTO导电玻璃基体上,经煅烧制得TiO2致密层;

(6)、将所述TiO2浆料旋涂在步骤(5)制得的TiO2致密层表面,经煅烧制得TiO2介孔层;

(7)、将步骤(6)制得的TiO2介孔层浸泡在步骤(4)中配制的四氯化钛溶液中,经煅烧制得TiO2光阳极;

(8)、将所述溴化铅溶液旋涂在TiO2光阳极表面,经加热制得溴化铅薄膜;

(9)、将所述溴化铯甲醇溶液旋涂在所述溴化铅薄膜表面,加热;并重复此步骤,制备得到高质量CsPbBr3钙钛矿吸光层;

(10)、将步骤(3)中的聚苯胺/氧化锌前驱体溶液旋涂在所述CsPbBr3钙钛矿吸光层表面,最后刮涂碳浆料,组装成基于聚苯胺和氧化锌光活化层的全无机钙钛矿太阳能电池。

进一步的:所述步骤(1)中苯胺盐酸溶液中苯胺占溶液的浓度为0.3~0.5mol/L。

进一步的:所述步骤(1)中过硫酸铵溶液中过硫酸铵浓度为0.1~0.3mol/L。

进一步的:所述步骤(1)中聚合反应中过硫酸铵和苯胺的反应摩尔比例为1:2~3。

进一步的:所述步骤(1)中聚合条件控制在0~10℃,聚合时间控制在3小时。

进一步的:所述步骤(3)中聚苯胺和氧化锌在氯苯中的质量浓度为5~20%。

进一步的:所述步骤(3)中聚苯胺和氧化锌按质量比1:0.8~1.2混合。

本发明还提供了制得的基于聚苯胺和氧化锌光活化层的全无机钙钛矿太阳能电池。

进一步的:所述全无机钙钛矿太阳能电池的开路电压为1.4~1.5V、短路电流为7~8mA·cm-2、填充因子为0.70~0.85、光电转换效率为8~10%。

本发明还提供了所述的基于聚苯胺和氧化锌光活化层的全无机钙钛矿太阳能电池的制备方法在电池组件中的应用。

与现有技术相比,本发明的技术方案具有以下优点和技术效果:

(1)本发明针对CsPbBr3钙钛矿层吸光范围窄(300~550nm)的缺点,充分利用了聚苯胺能够吸收550~625nm范围内的可见光,产生光生载流子。将其与氧化锌混合形成有机-无机杂化光活化层,光生载流子通过氧化锌传输到外电路,明显提高电池的短路电流密度,将目前全无机CsPbBr3钙钛矿太阳能电池的效率提升至9%以上。

(2)本发明所采用的聚苯胺本身也是一种良好的空穴材料,能够加速空穴的提取,降低空间电荷的积累,减小载流子的复合,明显提高电池的开路电压和填充因子。

(3)本发明所涉及的全无机CsPbBr3钙钛矿太阳能电池具有优异的稳定性,在湿度为60~90%的环境下连续测试75天,电池效率无明显衰减。

附图说明

图1为本发明制备的基于聚苯胺/氧化锌有机-无机杂化光活化层的全无机CsPbBr3钙钛矿太阳能电池在一个标准太阳光照下的J-V曲线。

图2为本发明制备的基于聚苯胺/氧化锌有机-无机杂化光活化层的全无机CsPbBr3钙钛矿太阳能电池的IPCE曲线。

图3为本发明制备的基于聚苯胺/氧化锌有机-无机杂化光活化层的全无机CsPbBr3钙钛矿太阳能电池在80%RH的长期稳定性能。

具体实施方式

下面结合具体实施例对本发明的技术方案作进一步详细的说明。

实施例1

(1)、将苯胺单体稀释在1mol/L的HCl水溶液中,配成0.325mol/L的苯胺/盐酸溶液;

(2)、将过硫酸铵溶于1mol/L的HCl水溶液中,配成0.125mol/L的澄清透明溶液;

(3)、取20mL步骤(2)所述溶液缓慢滴加到20mL的步骤(1)所述溶液中,在冰浴条件下聚合反应3小时,得到聚苯胺反应液;

(4)、将步骤(3)中的聚苯胺反应液抽滤,并用乙醇和水清洗三次,直至滤液为无色透明状,经真空干燥24小时制备聚苯胺粉体;

(5)、配制浓度为0.1mol/L的乙酸锌甲醇溶液和0.4mol/L的氢氧化钾甲醇溶液;将所述氢氧化钾甲醇溶液逐滴加到所述乙酸锌甲醇溶液中,在60~70℃下经剧烈搅拌3小时,并离心、干燥得到氧化锌纳米颗粒;

(6)、将步骤(4)和(5)制得的所述聚苯胺粉体和氧化锌纳米颗粒按质量比1:1在氯苯中混合,制备得到聚苯胺/氧化锌前驱体溶液。

(7)、配制浓度为0.5mol/L的钛酸异丙酯乙醇溶液(钛酸异丙酯为溶质,溶解在乙醇中),通过溶胶-水热法制备0.1g/mL的TiO2浆料(TiO2溶解在水中);配制浓度为0.04mol/L的四氯化钛水溶液(四氯化钛溶解在水中);配制浓度为1mol/L溴化铅的DMF溶液(溴化铅为溶质,溶解在DMF中)和浓度为0.07mol/L的溴化铯甲醇溶液(溴化铯为溶质,溶解在甲醇中);

(8)、将90微升步骤(7)中的钛酸异丙酯乙醇溶液以7000转/分的转速在FTO导电玻璃基体上旋涂30秒,经500℃煅烧2小时制备TiO2致密层;

(9)、将步骤(7)中TiO2浆料以2000转/分的转速在步骤(8)中制得的TiO2致密层表面旋涂30秒,经450℃煅烧30分钟制备TiO2介孔层;

(10)、将步骤(9)制得的TiO2介孔层浸泡在步骤(7)中配制的四氯化钛溶液中,先在75度下加热30分钟,经450℃煅烧30分钟制备TiO2光阳极;

(11)、将步骤(7)制备的溴化铅溶液以2000转/分的转速在步骤(10)制备的TiO2光阳极表面旋涂30秒,经100℃加热30分钟制备溴化铅薄膜;

(12)、将步骤(7)制备的溴化铯溶液以2000转/分的转速在步骤(11)中制备的溴化铅薄膜表面旋涂30秒,经250℃加热;

(13)、重复步骤(12)中的旋涂过程4次,制备得到高质量CsPbBr3钙钛矿层;

(14)、将步骤(7)中的聚苯胺/氧化锌前驱体溶液旋涂在步骤(13)制备的CsPbBr3钙钛矿吸光层表面,最后刮涂碳浆料,组装成基于聚苯胺/氧化锌有机-无机杂化光活化层的全无机CsPbBr3钙钛矿太阳能电池。

得到的所述全无机CsPbBr3钙钛矿太阳能电池的性能试验结果如图1-3所示。通过上述方法,获得了开路电压为1.4~1.5V、短路电流为7~8mA·cm-2、填充因子为0.70~0.85、光电转换效率为8~10%、在湿度为60~90%RH的条件下连续放置75天电池性能无明显衰减的全无机CsPbBr3钙钛矿太阳能电池。

本发明所述基于聚苯胺/氧化锌有机-无机杂化光活化层的全无机CsPbBr3钙钛矿太阳能电池可以作为电池组件和光伏电站应用。

以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1